ФЕРРОМАГНЕТИКИ, в-ва, к-рые ниже определенной т-ры - Кюри точки Тк обладают самопроизвольной намагниченностью. К ферромагнетикам относятся переходные элементы - Fe, Со, Ni, нек-рые РЗЭ (Gd, Tb, Dy, Но, Er, Tm); металлич. бинарные и многокомпонентные сплавы и соед. перечисленных металлов между собой и с др. неферромага. элементами; сплавы и соед. Cr и Mn с неферромага. элементами; аморфные сплавы, в т. ч. металлич. стекла, напр., состава 80% Fe, 20% В; магн. жидкости; нек-рые соед. актиноидов, напр. UH3; разб. р-ры замещения парамагн. атомов, напр. Fe или Со в матрице Pd.

Ферромагнетики- системы с открытыми электронными оболочками, т. е. их вырожденные молекулярные орбитали заполнены частично. Магн. моменты атомов и ионов ферромагнетиков благодаря существующему между этими частицами обменному взаимодействию направлены одинаково, поэтому ферромагнетики всегда намагничены. Однако в отсутствие внеш. магн. поля намагниченность макроскопич. ферромагн. образцов может не проявляться. Т.к. магн. моменты малых областей ферромагнетиков- доменов направлены различно, суммарный магн. момент м. б. равен нулю. Во внеш. магн. поле намагниченность ферромагнетиков увеличивается вследствие роста числа доменов с вектором намагниченности, близким к направлению поля, и последующего поворота магн. моментов доменов по полю. Магн. момент единицы объема 5017-5.jpg , где H - напряженность поля, 5017-6.jpg- магн. восприимчивость. С ростом H значение 1 увеличивается нелинейно, т.к. 5017-7.jpg зависит от H. Для ферромагнетиков, как правило, характерно явление гистерезиса - кривые намагничивания и размагничивания не совпадают (см. Магнитные материалы). При устранении намагничивающего поля ферромагнетики сохраняют остаточную намагниченность. Ее можно свести к нулю, напр., нагревая ферромагнетики выше точки Кюри. В этом случае ферромагнетик становится парамагнетиком, а нек-рые из РЗЭ - антиферромагнетиками.

Квантовомех. теория объясняет магнетизм атомов и ионов наличием орбитального и спинового магнетизма электронов (см. Магнитный момент), а также раскрывает природу обменного взаимод., ответственного за одинаковую ориентацию в ферромагнетиках соседних атомных мага, моментов.

Ферромагнетики подразделяют на магнитомягкие и магнитотвердые. Первые обладают малой коэрцитивной силой и значит, мага, проницаемостью. Для вторых характерны большие значения коэрцитивной силы и остаточной намагниченности.

Магнитотвердые ферромагнетики служат в осн. для изготовления постоянных магнитов. Магнитомягкие ферромагнетики используют в электротехнике (трансформаторы, электромоторы, генераторы и др.), для изготовления магнитопроводов, элементов памяти ЭВМ, в устройствах преобразования электромагн. энергии в механическую и наоборот и т. д.

Лит. см. при ст. Магнитные материалы.