9.3. Стационарная теплопроводность через цилиндрическую стенку

1). Однородная цилиндрическая стенка.

Рассмотрим однородный однослойный цилиндр длиной l, внутренним диаметром d1и внешним диаметром d2 (Рис.9.4).



Температуры поверхностей стенки –tст1 и tст2.

Уравнение теплопроводности по закону Фурье в цилиндрических координатах: Q = - λ∙2∙π∙r ·l· ∂t / ∂r (9.24)илиQ = 2·π·λ·l·Δt/ln(d2/d1), (9.25)где: Δt = tст1 – tст2 – температурный напор;

λ – κоэффициент теплопроводности стенки.

Для цилиндрических поверхностей вводят понятия тепловой поток единицы длины цилиндрической поверхности (линейная плотность теплового потока), для которой расчетные формулы будут:ql = Q/l =2·π·λ·Δt /ln(d2/d1), [Вт/м]. (9.26)Температура тела внутри стенки с координатойdх:tx = tст1 – (tст1 – tст2) ·ln(dx/d1) / ln(d2/d1). (9.27)2). Многослойная цилиндрическая стенка.

Допустим цилиндрическая стенка состоит из трех плотно прилегающих слоев (Рис.9.5).



Температура внутренней поверхности стенки –tст1, температуранаружнойповерхности стенки –tст2, коэффициенты теплопроводности слоев -λ1, λ2, λ3, диаметры слоев d1, d2, d3, d4.

Тепловые потоки для слоев будут:

1-й слойQ = 2·π· λ1·l·(tст1 – tсл1)/ ln(d2/d1), (9.28)

2-й слой

Q = 2·π·λ2·l·(tсл1 – tсл2)/ ln(d3/d2), (9.29)

3-й слой

Q = 2·π·λ3·l·(tсл2 – tст2)/ ln(d4/d3), (9.30)Решая полученные уравнения, получаем для теплового потока через многослойную стенку:Q = 2·π·l·(tст1 – tст2) / [ln(d2/d1)/λ1 + ln(d3/d2)/λ2 + ln(d4/d3)/λ3]. (9.31)Для линейной плотности теплового потока имеем:ql = Q/l = 2·π· (t1 – t2) / [ln(d2/d1)/λ1 + ln(d3/d2)/λ2 + ln(d4/d3)/λ3]. (9.32)Температуру между слоями находим из следующих уравнений:

tсл1 = tст1 – ql·ln(d2/d1) / 2·π·λ1 . (9.33)

tсл2 = tсл1 – ql·ln(d3/d2) / 2·π·λ2 . (9.34)

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ