2.6. Смесь идеальных газов

Газовой смесью понимается смесь отдельных газов, не вступающих между собой ни в какие химические реакции. Каждый газ (компонент) в смеси независимо от других газов полностью сохраняет все свои свойства и ведет себя так, как если бы он один занимал весь объем смеси.

Парциальное давление – это давление, которое имел бы каждый газ, входящий в состав смеси, если бы этот газ находился один в том же количестве, в том же объеме и при той же температуре, что и в смеси.

Газовая смесь подчиняется закону Дальтона:

║Общее давление смеси газов равно сумме парциальных давлений ║отдельных газов, составляющих смесь.Р = Р1 + Р2 + Р3 + . . .Рn = ∑ Рi , (2.14)где Р1 , Р2 , Р3 . . .Рn – парциальные давления.

Состав смеси задается объемными, массовыми и мольными долями, которые определяются соответственно по следующим формулам:r1 = V1 / Vсм ; r2 = V2 / Vсм ; … rn = Vn / Vсм , (2.15)

g1 = m1 / mсм ; g2 = m2 / mсм ; … gn = mn / mсм , (2.16)

r1 = ν1 / νсм ; r2 = ν2 / νсм ; … rn = νn / νсм , (2.17)где V1 ; V2 ; … Vn ; Vсм –объемы компонентов и смеси;

m1 ; m2 ; … mn ; mсм – массы компонентов и смеси;

ν1 ; ν2 ; … νn ; νсм – количество вещества (киломолей)

компонентов и смеси.

Для идеального газа по закону Дальтона:r1 = r1 ; r2 = r2 ; … rn = rn . (2.18)Так как V1 +V2 + … + Vn = Vсм и m1 + m2 + … + mn = mсм , то r1 + r2 + … + rn = 1 , (2.19)

g1 + g2 + … + gn = 1. (2.20)Связь между объемными и массовыми долями следующее:g1 = r1∙μ1см ; g2 = r2∙μ2см ; … gn = rn∙μnсм , (2.21)где: μ1 , μ2 , … μn , μсммолекулярные массы компонентов и смеси.

Молекулярная масса смесисм = μ1 r1 + r2 μ2+ … + rn μn . (2.22) Газовая постоянная смеси:Rсм = g1 R1 + g2 R2 + … + gn Rn =

= Rμ (g11 + g22+ … + gnn ) =

= 1 / (r1/R1 + r2/R2+ … + rn/Rn) . (2.23)Удельные массовые теплоемкости смесир см. = g1 ср 1 + g2 ср 2 + … + gnср n . (2.24)

сv см. = g1ср 1 + g2сv 2 + … + gnсv n . (2.25)Удельные молярные (молекулярные) теплоемкости смеси:

срμ см. = r1 срμ 1 + r2 срμ 2 + … + rnсрμ n . (2.26)

сvμсм. = r1сvμ 1 + r2сvμ 2 + … + rnсvμ n . (2.27)

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ