В приближении супермолекулы мы рассматривали систему из сольватированного соединения и некоторого числа молекул растворителя как одну большую молекулу. Такой подход является непосредственным обобщением методов квантовой химии, разработанных для расчета свойств отдельных (изолированных) соединений на межмолекулярные взаимодействия. При этом в качестве исходных частиц приходится оперировать электронами и атомными ядрами. При изучении системы, состоящей из одной молекулы, такой подход является единственно возможным, так как только на этом уровне можно анализировать большинство химических свойств молекулы. При рассмотрении межмолекулярных взаимодействий появляется возможность оперировать не с электронами и атомными ядрами, а с отдельными молекулами. Для этого необходимо иметь потенциалы, описывающие межмолекулярные взаимодействия. В случае системы, состоящей из электронов и ядер, необходимо решать уравнение Шредингера, так как электроны следует рассматривать как квантовые частицы. При рассмотрении межмолекулярных взаимодействий молекулы можно рассматривать как классические объекты. Благодаря этому появляется возможность использовать для их описания эмпирические потенциальные функции. Это существенно упрощает задачу.
Различные эмпирические потенциалы, которые предлагались различными авторами для описания межмолекулярных взаимодействий, не удовлетворяют точности, необходимой при учете сольватации. Отсутствие достаточно надежных потенциалов делало невозможным использование такого подхода для изучения сольватации. Существенный прогресс в этой области был достигнут благодаря работам Клементи с сотрудниками. Ими была выдвинута идея использовать неэмпирические квантовохимические расчеты для определения потенциалов межмолекулярных взаимодействий [106—109]. Первоначально потенциалы генерировались в численной форме путем неэмпирического расчета энергии взаимодействия сольватированной молекулы и молекулы растворителя. Но, так как дальнейшее использование численного потенциала для построения сольватационной оболочки затруднительно, была подобрана аналитическая функция для его аппроксимации, которая представляла собой сумму атом-атомных потенциалов. При этом все атомы в молекуле были разбиты на классы в зависимости от того, к каким функциональным группам и в каких положениях в группах находится данный атом. В результате число классов во много раз превышало число различных атомов. Для атомов каждого класса подбирались свои атом-атомные потенциалы. Аналитическая форма, в которой производился поиск атом-атомных потенциалов, выбиралась разной и зависела от базиса, использованного в расчете. При вычислении потенциала взаимодействия между молекулами в небольших базисах обычно использовалась относительно простая аналитическая функция
Uij= -Aij/r6ij + Bij/r12ij + Cijqiqj/rij
где Uij- энергия взаимодействия между атомами i и j; rij- расстояние между этими атомами; qi и qj- заряды на атомах; Аij, Вij и Сij- эмпирические параметры, зависящие от того, к каким классам принадлежат атомы i и j.
Для нахождения потенциалов межмолекулярных взаимодействий неэмпирическими методами с использованием больших базисов, близких к хартри-фоковскому пределу, использовались более сложные аналитические функции. Расчеты в больших базисах были проведены для определения аналитических потенциалов, описывающих взаимодействие между молекулами воды. Расчеты в минимальном базисе были использованы для определения атом-атомных потенциалов, описывающих взаимодействие между молекулой воды и основаниями ДНК, аминокислотами и т.д.
Число классов атомов у молекул типа оснований ДНК и аминокислот составляет несколько десятков, число неизвестных параметров в атом-атомных потенциалах достигает нескольких сотен. При определении значений этих параметров приходится варьировать относительное положение и взаимную ориентацию молекул в достаточно широких пределах, практически для вычисления каждого параметра приходится делать 15 - 20 расчетов. Таким образом, для расчета потенциала межмолекулярного взаимодействия молекул среднего размера типа оснований ДНК и молекул воды необходимо сделать несколько десятков тысяч расчетов полной энергии системы неэмпирическим методом. Поэтому процедура подбора параметров связана с очень большими затратами машинного времени. Но следует отметить одно благоприятное обстоятельство: по мере накопления наборов параметров и создания их банка для каждого нового соединения объем вычислений сокращается, так как оказывается возможным отнести большинство атомов к уже известным классам, для которых все параметры аналитических потенциалов известны из расчетов других молекул [110].
После нахождения потенциалов расчет строения сольватационной оболочки и энергии взаимодействия между растворителем и растворенным соединением становится относительно простой задачей, аналогичной задачам конформационного анализа. Аналитическая форма, в которой в настоящее время найдены потенциалы для описания взаимодействия молекул среднего размера и молекул воды, также совпадает с наиболее широко распространенными потенциалами, которые используются в конформационных расчетах. Однако параметры в потенциалах Клементи для межмолекулярных взаимодействий имеют совершенно иную природу. В конформационном анализе потенциалы типа 6 - 12 описывают ван-дер-ваальсовы взаимодействия между атомами, а у Клементи - электронодонорные и электроноакцепторные взаимодействия. Третий член в формуле для атом-атомных потенциалов соответствует кулоновскому взаимодействию. Для электрически нейтральных молекул значение коэффициента Сij в потенциалах Клементи близко к единице. Однако для ионов оно не превышает 0,5; это связано, по-видимому, с эффектами экранирования и перераспределения заряда.
Использование потенциалов Клементи позволяет рассматривать гидратацию весьма сложных молекул большим числом молекул воды. Пока число молекул воды не превышает 10 - 15, каких-либо существенных трудностей при расчете строения гидратационной оболочки не возникает. Однако при дальнейшем увеличении числа молекул воды появляется ряд новых проблем. Для достаточно точного описания гидратационной оболочки даже небольшого соединения количество молекул воды желательно увеличить до 200 - 300. При расчете строения такой огромной гидратационной оболочки основная трудность заключается в существовании большого числа структур с близкими энергиями. Задача сводится к нахождению всех таких структур, определению вероятности реализации каждой из них и усреднению по всем найденным структурам. В таком расчете приходится учитывать температурную зависимость.
В работах Клементи показано, что для нахождения строения гидратационных оболочек можно успешно использовать метод Монте-Карло, с помощью которого были проведены расчеты строения гидратационных оболочек ряда простых ионов с учетом их взаимодействия с 200 - 250 молекулами воды. При этом возникла еще одна проблема. Распределение молекул воды в расчетах методом Монте-Карло носит вероятностный характер, поэтому перед исследователями встала задача перехода к таким простым и наглядным характеристикам гидратации, как число молекул воды в первой гидратационной сфере и ее радиус. Для получения этой информации было предложено вычислить зависимость плотности атомов водорода или кислорода от расстояния до центра иона. На таких графиках получается ряд четко выраженных максимумов. Их положение для атомов кислорода обычно связывают с радиусами гидратационных оболочек, а площадь под кривыми - с количеством молекул воды в оболочке. Ниже приведены радиусы первых гидратационных оболочек (R) и число молекул воды в них (N), вычисленные таким способом [108, 109].
R, нм |
N |
|
Li+ |
0,19—0,20 |
4 |
Na+ |
0,23—0,24 |
5—6 |
К+ |
0,28—0,29 |
5—7 |
F- |
0,27—0,28 |
4—6 |
Cl- |
0,34—0,35 |
6—7 |
Использование атом-атомных потенциалов весьма перспективно и может существенно расширить наши представления о сольватации и ее влиянии на реакционную способность органических соединений. Банк параметров в настоящее время достаточно велик, и можно надеяться, что в будущем он будет еще расширен. Однако следует подчеркнуть те допущения, которые делаются в этих расчетах.
1. Используется приближенный квантовохимический метод (для молекул среднего размера весьма грубый) для вычисления параметров атом-атомных потенциалов. В случае небольшого числа молекул растворителя ошибки могут быть невелики, но по мере увеличения их количества они будут накапливаться.
2. Ошибки в расчетах могут возникать за счет аппроксимации численного потенциала весьма простыми аналитическими функциями.
3. Атом-атомные потенциалы, которые обычно используют для изучения сольватации, не являются аддитивными функциями, а взаимодействия трех тел учесть довольно сложно и этого почти никогда не делают, хотя эти коллективные взаимодействия существенно влияют на результаты расчета (это, по-видимому, самый большой недостаток метода Клементи).
В ряде работ подход Клементи к учету сольватации был использован для изучения влияния растворителя на поверхности потенциальной энергии органических реакций [111, 112]. Эти работы будут более подробно рассмотрены ниже. Здесь же мы только отметим, что проведение таких расчетов требует очень больших затрат машинного времени. Их порядок таков: 1) вычисляют полную энергию для какой-либо точки на поверхности потенциальной энергии газофазной реакции; 2) в этой точке рассчитывают параметры атом-атомных потенциалов, описывающих взаимодействие реагентов с молекулой растворителя; 3) с помощью атом-атомных потенциалов, полученных на предыдущем этапе расчета (см. пункт 2), методом Монте-Карло вычисляют энергию сольватации.
Такую цепочку расчетов приходится проводить для каждой точки поверхности потенциальной энергии, так как в ходе реакции электронная структура реагентов существенно меняется, что приводит к изменению параметров эмпирической потенциальной функции, описывающей взаимодействие с молекулой растворителя. Из-за этого нельзя пользоваться банком готовых параметров для атом-атомных потенциалов, более того, их приходится пересчитывать в каждой новой точке поверхности потенциальной энергии. Именно эта стадия расчета связана с очень большим объемом вычислений.