Динамика элементарного акта
ДИНАМИКА ЭЛЕМЕНТАРНОГО АКТА хим. реакции, изучает превращение отдельной молекулы или комплекса взаимодействующих молекул из заданного начального квантового состояния i в определенное конечное состояние f (от англ. initial и final соотв.). Для процессов в газовой фазе элементарные акты - гл. обр. столкновения молекул, сопровождающиеся передачей энергии, мономолекулярными превращениями или бимолекулярными р-циями; в конденсир. средах (жидкостях и твердых телах) элементарные акты взаимод. частиц рассматриваются с учетом взаимод. системы с окружающей средой. Теоретич. исследование элементарных актов основано на изучении методами классич. или квантовой механики особенностей движения (динамики) электронов и атомных ядер, составляющих систему частиц, к-рые участвуют в элементарном акте (одна молекула в случае мономолекулярных превращений, две - при бимолекулярных р-циях, три - при тримолекулярных).Основные понятия и экспериментальные методы. Осн. параметр, рассматриваемый в динамике элементарного акта, - вероятность перехода Pif , к-рая характеризует увеличение заселенности квантового состояния f продуктов в результате уменьшения заселенности состояния i реагентов в единицу времени. Необходимость введения такого параметра (вместо константы скорости процесса - хим. р-ции или неупругого соударения частиц) обусловлена тем, что динамика элементарного акта изучает мол. превращения на микроскопич. уровне и не рассматривает превращения всех частиц в единице объема, т. е. полные концентрации реагирующих в-в. В условиях, когда задание одного начального квантового состояния частицы (атома, молекулы) и определение одного конечного ее состояния невозможно по к.-л. причинам (напр., в связи с недостаточной разрешающей способностью эксперим. методики), динамика элементарного акта изучает превращение из группы состоянии, задаваемой средним квантовым числом
с разбросом значений
в др. группу, заданную соотв. величинами
и
Особенности движения электронов и ядер молекул, взаимодействующих при соударениях, определяются в осн. энергией относит. движения молекул, их ориентацией в пространстве и внутр. состоянием, задаваемым набором квантовых чисел (см. Столкновений теория). Соответственно и эксперим. исследования динамики элементарного акта основаны на использовании методов, к-рые позволяют оптимальным образом "приготовлять" реагенты и регистрировать продукты. В частности, молекулярных пучков метод обеспечивает заданную относит. энергию молекул реагентов; отклоняющие внеш. поля позволяют создавать предпочтит. ориентацию молекул относительно заданного направления (напр., вектора скорости); лазерное возбуждение - задавать определенное колебат. и вращат. состояния молекул. Для анализа состояний продуктов используется измерение дифференциальных сечений р-ций с дополнит. определением распределения частиц по скоростям; лазерно-индуцированная флуоресценция позволяет определять конечные колебат. и вращат. состояния (см. Люминесценция); используют также хемилюминесценцию в видимой и ИК областях спектра. Эксперим. результаты обычно формулируют в виде набора величин (напр., т. наз. детальных или поуровневых сечений), к-рые непосредственно связаны с вероятностями переходов Рif . Процессы в конденсированных средах. Динамика элементарного акта изучает эволюцию рассматриваемой системы частиц в условиях ее непрерывного взаимод. с окружением. Поскольку исследование динамич. ур-ний системы и окружения слишком сложно и даже не точно определено (что есть окружение?), теоретич. описание таких процессов требует отказа от детерминированной картины механики. Чисто динамич. ур-ния заменяют стохастическими, в к-рых движение системы частиц (атомов, молекул) по пов-стям потенц. энергии дополняется учетом взаимод. системы с окружением, к-рое носит случайный (стохастический) характер из-за участия в нем большого числа частиц окружения. Мат. способ описания такого взаимод. - ф-ция корреляции случайной силы, действующей на систему со стороны окружения. Ф-ции м. б. независимо рассчитаны, напр., методами молекулярной динамики, использующими компьютерную симуляцию поведения большого числа частиц, или иногда определены экспериментально. В основе совр. теоретич. подхода лежит т. наз. обобщенное ур-ние Ланжевена, к-рое учитывает случайное действие окружения на выделенную систему частиц и обратную р-цию системы на окружение. При нек-рых упрощающих предположениях относительно взаимод. частиц внутри системы и взаимод. системы с окружением оказывается возможным построение целой иерархии приближений, к-рые формулируются в виде упрощающих ур-ний. К ним относятся ур-ние Фоккера - Планка (справедливо при условии, когда время "рассасывания" флуктуации в среде намного меньше характерных времен движения в системе), ур-ние Смолуховского (справедливо при том же предположении и при дополнит. условии установления почти равновесного распределения по скоростям частиц системы), диффузионное ур-ние Фика (справедливо при тех же предположениях и дополнит. условии своб. диффузии реагентов).
Химические реакция в сильных внешних полях - электрич., магн. и световых - сравнительно новое направление динамики элементарного акта В этих случаях наряду с взаимод. частиц между собой и с окружением приходится рассматривать их взаимод. с полями. Последние изменяют вероятности переходов; в частности, могут открываться новые пути превращений, к-рые в отсутствие полей запрещены. Возникает принципиальная возможность направленного влияния на элементарный акт воздействием внеш. излучения. Примером могут служить т. наз. радиационные столкновения, когда при сближении реагентов поглощается фотон, система переходит в новое электронное состояние, обладающее повышенной (и, возможно, направленной) реакц. способностью. Др. пример -влияние магн. полей на спиновые состояния частиц реагентов, от к-рых в решающей степени зависит эффективность элементарного акта (см. Магнитно-спиновые эффекты). Исп. литература: Кондратьев В. Н., Никитин Е. Е., Химические процессы в газах. М., 1981; Теоретические проблемы химической физики, М., 1982. Е. Е. Никитин.
Ещё по теме
Неравновесная химическая кинетика
Реакционная способность — квантово-химические теории и влияние среды
Активированный комплекс
Химические реакции — механизмы и кинетика
Химическая кинетика — основные понятия и законы
Столкновений теория — основы химической кинетики
Ядерная химия — открытия и методы исследования
Радиационно-химические реакции — механизмы и применение
Квантовая механика