ИЗОТОПНЫЕ ИНДИКАТОРЫ, в-ва, имеющие в своем составе хим. элемент с изотопным составом, отличающимся от природного. Часто изотопными индикаторами называют сами изотопы-метки, добавляемые в в-во, содержащее прир. смесь изотопов данного элемента. Т.к. поведение изотопов одного элемента в физ.-хим. процессах практически идентично (за исключением легких элементов с атомными номерами Z [ 10-12, для к-рых относительно большую роль могут играть изотопные эффекты), использование изотопных индикаторов позволяет по регистрации изотопа-метки исследовать самодиффузию и миграцию меченого в-ва, определять ничтожно малые кол-ва в-ва, изучать механизмы хим. р-ций и биол. процессов (т. наз. метод изотопных индикаторов, ранее наз. методом меченых атомов).
Различают стабильные и радиоактивные изотопные индикаторы в зависимости от того, стабильный или радиоактивный изотоп добавляют в в-во в качестве метки. В стабильных изотопных индикаторах в качестве метки м. б. использованы изотопы только тех элементов, к-рые в природе представлены смесями стабильных изотопов. У целого же ряда элементов (В, F, Na, Al, P, I) имеется только один стабильный нуклид, поэтому стабильных изотопных индикаторов, меченных по этим элементам, нет. Кроме того, для применения стабильного изотопа в качестве метки его относит. содержание в прир. смеси изотопов данного элемента должно быть невелико. Так, в случае кислорода, состоящего из стабильных изотопов16О, 17О и 18О (содержание в прир. смеси 99,756%, 0,037% и 0,204% соотв.), роль стабильного изотопа-метки могут играть 17О и 18О (чаще 18О, т.к. его извлечение из прир. смеси намного дешевле). Регистрацию стабильного изотопа-метки в изучаемых процессах осуществляют по его содержанию в в-ве на разных этапах процесса. Для этого используют в осн. масс-спектрометрию; иногда, особенно в случае элементов с малыми Z, также ИК спектроскопию, ЯМР, вискозиметрию и др. методы.
Радиоактивные изотопные индикаторы более универсальны: радионуклиды, к-рые можно использовать как метки, имеются у подавляющего большинства элементов. При этом существует возможность выбора радионуклида-метки среди неск. радионуклидов, различающихся типом и энергией радиоактивного превращ. и периодом полураспада T1/2. Присутствие радиоактивных изотопных индикаторов в среде устанавливают с помощью радиометрич. аппаратуры, детектируя ионизирующее излучение, испускаемое радионуклидом. Разработка автоматич. аппаратуры для быстрой регистрации излучения радионуклида позволяет применять в качестве меток короткоживущие радионуклиды, напр. 20F (T1/2 ок. 11 с). Такие радионуклиды часто предпочтительнее долгоживущих, т. к. уже через небольшой промежуток времени (неск. мин) исследуемый материал совершенно свободен от радиоактивных атомов.
Стабильные нуклиды для изотопных индикаторов получают методами изотопов разделения. Важное преимущество их использования - отсутствие ионизирующих излучений; недостатки: высокая (в большинстве случаев) стоимость препаратов, сложная техника регистрации, низкая точность определения и сравнительно высокие пределы обнаружения (не ниже 10-5-10-17% по массе). В случае радиоактивных изотопных индикаторов пределы обнаружения тем ниже, чем меньше T1/2 радионуклида-метки, и могут достигать чрезвычайно низких значений (10-16-10-20% по массе). Это определяет широкое применение радиоактивных изотопных индикаторов в химии, физике, биологии, медицине и др. областях. Большинство используемых радионуклидов - искусственные, получаемые при ядерных р-циях как продукты деления, при проведении активац. анализа, радиоактивном распаде долгоживущего "материнского" нуклида (см. Изотопные генераторы). Для тяжелых элементов - Ра, Th, Bi, Pb, Тl - обычно используют их короткоживущие радионуклиды, входящие в состав прир. радиоактивных рядов.
Так, в качестве метки для тория (прир. Th a-радиоактивeн, но имеет очень низкую уд. радиоактивность из-за большого значения Т1/2 = 1,40.1010 лет) применяется, напр., член ряда урана-радия 234Тh с T1/2 = 24,1 сут.
Излучение радионуклида-метки может привести к появлению разл. артефактов из-за радиолиза, образования горячих атомов или др. эффектов. Однако при низких уд. радиоактивностях препаратов, достаточных для проведения подавляющего большинства исследований, артефакты несущественны; они начинают сказываться на результатах при уд. радиоактивностях препаратов выше 102-105 МБк/г; тогда для выявления артефактов проводят дополнит. исследования (используют разные радионуклиды-метки одного и того же элемента, варьируют уд. радиоактивность препаратов и т.п.).
Ограниченность применения изотопных индикаторов связана, во-первых, с уже упоминавшимися изотопными эффектами, во-вторых, с возможностью изотопного обмена (напр., атомов-меток в исследуемом растворенном в-ве с атомами того же элемента, входящими в состав молекул р-рителя). Поэтому в молекулу изучаемого хим. соед. изотоп-метку стараются вводить в определенную позицию, где скорость изотопного обмена невелика. Так, при использовании в качестве изотопного индикаторафенола его метят по бензольному кольцу, а не по атому Н фенольной группы. Подробнее о синтезе хим. соед., содержащих изотопы-метки в том или ином положении, и номенклатуре этих соед. см. в ст. Меченые соединения.
Радиоактивные изотопные индикаторы впервые применены для исследований Г. Хевеши и Ф. Пакетом в 1913.
=== Исп. литература для статьи «ИЗОТОПНЫЕ ИНДИКАТОРЫ»: Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов, М., 1977; Радиоактивные индикаторы в химии. Основы метода, под ред. В. Б. Лукьянова, 3 изд., М., 1985; Остерман Л. А.. Исследование биологических макромолекул электрофокусированием. иммуноэлектрофорезом и радиоизотопными методами. М., 1983, С. С. Бердоносов.