рассеянного света возрастает, составляя h(v0+vi), что приводит к появлению в спектре линий с частотами v0+vi (антистоксовы линии). Энергетич. состояние в-ва характеризует разность энергий возбуждающего и рассеянного света Ei+hvi, т. е, важнейшей характеристикой спектров КР являются не сами частоты, а их сдвиг относительно частоты рэлеевской линии. Стоксовы и антистоксовы линии располагаются симметрично относительно рэлеевской линии и образуют спектр КР; при этом сдвиги частот vi имеют значения 10-4000 см-1 и совпадают с частотами молекул, наблюдаемыми в ИК спектрах поглощения.
полносимметричных колебаний 0[r[0,75 (поляризов. линии), что позволяет использовать величину r для установления симметрии молекул. При возбуждении неполяризов. светом для неполносимметричных колебаний r=0,86. . Комбинационного рассеяния спектроскопия применяется для изучения орг. и неорг. в-в в любых агрегатных состояниях, за исключением черных и глубоко окрашенных образцов и соед., обладающих сильной флуоресценцией в видимой области спектра. По сравнению с И К спектрами имеет преимущества при исследовании водных р-ров, тонких волокон, микрообъектов, при изучении низкочастотных колебаний.
Комбинационного рассеяния спектроскопию используют для идентификации в-в, определения отдельных хим. связей и групп в молекулах, для исследования внутри- и межмол. взаимодействий, разл. видов изомерии, фазовых переходов, водородных связей, адсорбир. молекул и катализаторов, для обнаружения микропримесей в-в, загрязняющих окружающую среду.
Использование лазеров значительно расширило границы применения комбинационного рассеянии спектроскопия и привело к развитию ряда новых методов в спектроскопии КР. Возможность изменения длины волны возбуждения путем замены лазеров или с помощью лазера с перестраиваемой частотой привела к развитию резонансного КР, к-рое возникает, когда частота возбуждающего света попадает в область поглощения в-ва. Этот метод позволяет определять низкие концентрации в-в, что особенно важно для биологии и биохимии.
При возбуждении КР лазерами большой мощности наблюдаются новые эффекты, обусловленные нелинейными членами в разложении (1). Гипер - КР связан с гиперполяризуемостью b, наблюдается в области частот 2(vobvi) и позволяет измерять частоты колебаний, запрещенных и в КР, и в ИК спектрах; кроме того, в гипер - КР проявляются все ИК активные колебания, к-рые м. б. легко идентифицированы, т.к. они поляризованы.
Когерентное антистоксово рассеяние света (КАРС) связано с третьим членом в разложении (1), содержащим поляризуемость третьего порядка g. При одновременном облучении образца двумя лазерами с частотами v1 и v2, направленными под небольшим углом, и если разность v1-v2=vi совпадает с одной из внутримол. частот, на частоте 2(v1-v2) возникает направленное лазероподобное излучение, интенсивность к-рого значительно выше интенсивности обычного КР. Плавно меняя частоту v2, можно получить весь спектр КАРС. Этот метод м. 6. использован для анализа в-в при высокой т-ре.
Под действием мощных лазеров может возникнуть также вынужденное КР, при к-ром рассеянные фотоны
стимулируют (вынуждают) дальнейший процесс рассеяния. Интенсивность отдельных линий при этом резко возрастает и делается сравнимой с интенсивностью возбуждающего света.
При одновременном облучении образца интенсивным лазерным пучком с частотой v0 и непрерывным белым излучением с частотами в интервале от v0 до v0+4000 см-1 возникает спектр инверсного КР. При этом в спектрах поглощения наблюдаются частоты активные в КР.
Новые возможности для исследования структуры оптически активных молекул в области колебат. переходов открывает спектр кругового дихроизма КР, представляющий собой разность спектров, полученных при возбуждении КР излучением, поляризованным по кругу вправо и влево.
Обнаружение резкого усиления (до 106 раз) интенсивности КР молекул на пов-сти нек-рых металлов (Ag, Au, Сu), т. наз. гигантское КР, позволяет исследовать процессы адсорбции и гетерог. катализа.
В настоящее время выпускают спектрометры, к-рые регистрируют спектры КР бесцв. и окрашенных образцов в кол-вах до 10-4 г (или мл). Разработаны скоростные спектрометры с использованием импульсных лазеров, регистрирующие спектр КР за 10-9 с, а также приборы, к-рые сочетают лазер с микроскопом и позволяют получать спектры КР от объектов размером порядка 1 мкм.
КР открыт в 1928 Л. И. Мандельштамом и Г. С. Ландсбергом (СССР) для кристаллов и независимо от них Ч. В. Раманом и К. С. Кришнаном (Индия) для жидкостей.
===
Исп. литература для статьи «КОМБИНАЦИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ»: Грассели Дж., Снейвили М., Балкин Б., Применение спектроскопии КР в химии, пер. с англ.. М., 1984; Кэри П., Применение спектроскопии КР и РКР в биохимии, пер. с англ.. М.. 1985. Б. В. Локшин.
Страница «КОМБИНАЦИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ» подготовлена по материалам химической энциклопедии.