Катализаторы
КАТАЛИЗАТОРЫ, в-ва, изменяющие скорость хим. р-ции или вызывающие ее, но не входящие в состав продуктов. Различают катализаторы гомог. и гетерог. катализа. Типичные катализаторы для гомог. катализа - протонные и апротонные к-ты, основания, нек-рые комплексы металлов, для гетерогенного - металлы, оксиды металлов, сульфиды и др. Р-ции одного и того же типа могут протекать в условиях как гомогенного, так и гетерог. катализа. Так, для кислотно-основных р-ций типичные катализаторы - р-ры к-т и оснований или твердые тела с кислотными (Аl2О3, ТiO2, ТhO2, алюмосиликаты, цеолиты и др.) или основными [CaO, BaO, MgO, Ca(NH2)2 и др.] св-вами (см. Гетерогенный катализ, Гомогенный катализ, Кислотно-основной катализ). Для окислит.-восстановит. р-ций наиб. распространенными катализаторами являются переходные металлы (Pt, Pd, Ni, Fe, Co), оксиды (V2O5, MnO2, MoO3, Сr2О3), в т.ч. шпинели, сульфиды (MoS2, WS2, CoS), а также полупроводники, не имеющие в своем составе переходных элементов.Требования, предъявляемые к катализаторам. Катализаторы, используемые в пром-сти, должны обладать постоянной высокой каталитич. активностью, селективностью, мех. прочностью, термостойкостью, устойчивостью к действию каталитич. ядов, большой длительностью работы, легкой регенерируемостью, определенными гидродинамич. характеристиками, незначительной стоимостью. Эти требования относятся, в первую очередь, к катализаторам для гетерог. катализа. Единой теории подбора катализаторов не существует. Многие катализаторы, широко применяемые в пром-сти, подобраны эмпирич. путем. Однако развитие представлений о механизме катализа позволяет сформулировать нек-рые принципы подбора катализаторов, пригодных для отдельных типов р-ций. Принимая за основу ту или иную теорию действия катализаторов, стремятся найти к.-л. независимую, хорошо изученную характеристику катализатора, к-рую можно связать с каталитич. активностью. Напр., установлены корреляции активности катализаторов с числом d-электронов на орбитали катиона (для простых оксидов), параметром кристаллич. решетки, электрич. проводимостью, зарядом и радиусом иона, энергией хим. связи, кислотностью и др. Основой этих корреляций, как правило, является положение элементов, входящих в катализаторы, в периодич. системе. В технол. расчетах каталитич. активность определяется скоростью р-ции, отнесенной к единице объема или массы катализатора (см. Активность катализатора), и зависит от его хим. состава. Поскольку формирование св-в катализатора происходит не только во время его приготовления, но и во время эксплуатации, метод приготовления катализатора должен учитывать возможность образования активных центров в условиях катализа. Кроме того, во мн. случаях активность пром. катализаторов увеличивают добавлением промоторов (сокатализаторов). В гетерог. катализе активность катализатора, как правило, пропорциональна его уд. пов-сти. Большой уд. пов-стью обладают пористые высокодисперсные катализаторы или катализаторы, полученные нанесением активных компонентов на пористые носители (см. Нанесенные катализаторы). С уменьшением размера частиц уд. пов-сть возрастает. Однако при малых частицах и малых диаметрах пор возможен переход р-ции из кинетич. области во внутреннедиффузионную, когда внутр. пов-сть зерна катализатора не полностью участвует в р-ции.
Приготовление катализаторов. Для катализаторов с развитой уд. пов-стью наиб. распространение получил метод осаждения из водных р-ров солей с послед. прокаливанием образующихся соединений. Мн. оксиды металлов получают осаждением гидроксидов из р-ров солей под действием щелочи с послед. прокаливанием. При этом предпочтительно использование водного NH3, поскольку отпадает необходимость отмывки осадка от щелочных металлов. При увеличении рН среды образуется гидроксид, содержащий примеси основных солей. Для большинства гидроксидов металлов размер частиц после осаждения составляет 4-5 нм. В дальнейшем более р-римые гидроксиды могут подвергаться рекристаллизации с образованием укрупненных частиц размером 10-103 нм. Для получения смешанных оксидных катализаторов применяют методы осаждения из смеси разл. солей, напр., осаждение нерастворимых СоМоО4 из р-ров молибдата аммония и нитрата кобальта. Для получения сложных оксидных и гидроксидных осадков используют методы комплексообразования, напр., образование оксалатных комплексов при взаимод. ионов Al(Ш), Сr(III), Fe(III) с щавелевой к-той или оксалатом аммония. Осадок катализатора после фильтрования, центрифугирования или декантации и промывки сушат. При этом удаляется кристаллизац. вода и создается первичная пористая структура катализатора. При дальнейшем прокаливании гидроксидов происходит превращ. их в оксиды, а в ряде случаев - взаимод. между оксидами и др. хим. или фазовые превращения. Напр., при прокаливании смеси гидроксидов Со и Сr образуется СоСr2О4, применяемый в качестве катализатора глубокого окисления углеводородов. Уд. пов-сть и пористость при разложении гидроксидов возрастают. При совместном разложении смеси двух гидроксидов степень дисперсности катализатора значительно выше, чем при разложении чистых в-в. Методы осаждения позволяют изменять в широких пределах уд. пов-сть и пористость получаемых катализаторов. Недостаток методов осаждения для пром. применения - большой расход реактивов, значительные объемы сточных вод. Поэтому катализаторы часто получают непосредств. разложением твердых солей -чаще всего нитратов, карбонатов, оксалатов и т.д., при нагр. к-рых образуются твердый оксид, СО2, Н2О и оксиды азота; последние из-за токсичности приходится улавливать. Для получения хромоксидных катализаторов используют также разложение аммониевых солей, напр., хромата и бихромата аммония. Метод разложения твердых солей редко применяют для получения сложных оксидных систем вследствие разл. т-р разложения солей разных металлов, что не позволяет получать равномерно распределенные смеси оксидов. Твердые катализаторы с высокой уд. пов-стью и каталитич. активностью готовят механохим. методами с использованием разл. дробилок и мельниц (см. Измельчение), что позволяет также значительно снизить т-ру синтеза сложных оксидов из простых. Перспективен плазмохим. метод - пропускание исходных в-в, напр., р-ра, содержащего соли металлов, через плазмотрон, т.к. уменьшается кол-во сточных вод в произ-ве катализаторов. Прогрессивный способ получения высокодисперсных катализаторов - распылит. сушка, заключающаяся в быстром обезвоживании суспензии катализатора вследствие разности парциальных давлений паров жидкости в окружающей среде и на пов-сти движущихся капель высушиваемого катализатора. Таким методом получают однородные частицы сферич. формы с размерами порядка 100 мкм, напр., в произ-ве алюмосиликатных катализаторов. Металлич. (реже оксидные) катализаторы готовят обычно нанесением активного компонента на носитель. При проведении р-ций в кинетич. области выгодно равномерное распределение катализатора по всему объему пористой гранулы носителя, во внутреннедиффузионной области - распределение активного компонента вблизи наружной пов-сти гранулы. Выбранный носитель (Al2О3, силикагель и т.д.) пропитывают р-ром, содержащим необходимые компоненты катализатора, подвергают сушке и нагреванию. Для равномерного распределения активного компонента на носителе применяют спец. режимы сушки. Окончательно металлич. катализаторы требуемой дисперсности формируются при нагревании, восстановлении оксидов на носителе газами-восстановителями (Н2, СО) перед катализом или непосредственно во время катализа. Пористые металлич. катализаторы, т. наз. скелетные, получают из двух- или многокомпонентных сплавов каталитически активных металлов (Ni, Со, Сu, Fe) с Al или Si с послед. выщелачиванием Al или Si р-рами электролитов, отгонкой в вакууме или др. методами. Напр., для приготовления широко применяемых скелетных Ni-катализаторов гидрирования (Ni-Ренея) в расплав Al вводят Ni и затем медленно охлаждают. При этом образуется мелкокристаллич. структура Ni и его соединений с Al (Ni3Al, NiAl, Ni2Al3 и др.). Охлажденный сплав подвергают дроблению и обработке р-ром NaOH. Полученный катализатор пирофорен, поэтому его хранят и транспортируют под слоем масла. Перед использованием активируют Н2 при 120-200 °С. Уд. пов-сть 5-50 мг/г, диаметр пор 2-12 нм. Среди плавленых металлич. катализаторов наиб. распространение получили плавленые железные катализаторы синтеза NH3. Их готовят плавлением железа в индукционных печах, вводя при этом промоторы Al2О3 и SiO2. При окислении расплава кислородом вводят др. промоторы - К2О, СаО. Охлажденный катализатор дробят, просеивают и восстанавливают азотно-водородной смесью в колонне синтеза или в спец. аппарате. Для получения правильной геом. формы зерен катализатора используют разл. формовочные машины. Цилиндрич. гранулы получают выдавливанием (экструзией) влажной массы с помощью массивного винта (шнека) через отверстия нужного диаметра, после чего разрезают полученный жгут на отдельные цилиндрики. Последние м. б. закатаны в сферич. гранулы в спец. грануляторах. Плоские цилиндрич. таблетки получают прессованием сухого порошка на таблеточных машинах (см. Таблетирование).
===
Исп. литература для статьи «КАТАЛИЗАТОРЫ»: Боресков Г. К., в сб.: Катализаторы и каталитические процессы, Новосиб., 1977, с. 29-56; Myxленов И. П., Технология катализаторов, 8 изд., Л., 1988; Научные основы производства катализаторов, [под ред. Р. А. Буянова], Новосиб., 1982; Алхазов Т. Г., Марголис Л. Я., Глубокое каталитическое окисление органических веществ, М., 1985, гл. I. О. В. Крылов.
Страница «КАТАЛИЗАТОРЫ» подготовлена по материалам химической энциклопедии.