2.7. ИЗУЧЕНИЕ МЕХАНИЗМОВ ОРГАНИЧЕСКИХ РЕАКЦИЙ В РАСТВОРАХ МЕТОДАМИ КВАНТОВОЙ ХИМИИ

2.7.1. Диссоциация молекул в полярных растворителях

Рассмотрим вопрос о механизме диссоциации молекул в поляр­ных растворителях. Химики-экспериментаторы очень часто имеют дело с такими процессами при изучении многих органических ре­акций, поэтому необходимо уметь их моделировать в квантовохимических расчетах. На первый взгляд эта задача кажется очень простой, однако при более близком знакомстве с ней выясня­ется, что механизм этих процессов весьма сложен и общепри­нятые представления о нем являются неточными. В квантовохимических работах образование ионов в полярных растворителях наиболее часто рассматривалось на примере следующей модельной реакции [116]:

FH+ NH3 → F- + NH4+.                                                                                                 (I)

FH- кислота, aNH3 - основание, поэтому в водных раство­рах эта система должна существовать в ионной форме F- + NH4+. Однако в квантохимических расчетах удавалось получить лишь локальный минимум для ионной пары и то только при фиксирован­ном и достаточно большом расстоянии между атомами фтора и азота. Включение этого расстояния в число варьируемых парамет­ров неизменно приводило к исчезновению локального минимума для ионизированной системы. В качестве примера на рис. 2.1 при­ведены результаты такого расчета методом МПДП/Н, сольвата­ция моделировалась в приближении супермолекулы шестью молеку­лами воды.

 

Рис. 2.1. Сечение ППЭ для реак­ции переноса протона (I). 1 - расстояние между ато­мами F и N фиксировано; 2 - расстояние между атомами Fи N оптимизировано

Е, кДж/моль

 

Е, кДж/моль

Рис. 2.2. Сечение ППЭ для реакций переноса протона

1 - реакция (I); 2 – Н2О...Н2О ОН- + Н3О+.

R- расстояние между атомами F—Н или О—Н. Расчет выполнен методом МПДП/Н; для учета сольватации исполь­зована модель точечных диполей

Рис. 2.3. Сечение ППЭ для реакции переноса протона (I)

Расчет выполнен методом МПДП/Н, для учета сольватации использована модель точечных диполей μ(1030*D3):

1 - 0; 2 - 0,06; 3-0,12; 4 - 0,15.

При дальнейшем исследовании этой системы [116] было уста­новлено, что минимум для электрически нейтральной системы яв­ляется локальным, а глобальный минимум соответствует разделенной ионной паре, в которой расстояние между ионами состав­ляет около 1 нм (рис. 2.2). Для контактных ионных пар минимума обнаружено не было, что свидетельствует о невозможности их существования в водных растворах.

Из этих данных становится очевидной причина неудачного рас­смотрения многими авторами реакций диссоциации молекул в вод­ной среде. Делались попытки найти контактные ионные пары. Мо­дель выбиралась такой, что образование разделенных ионных пар было невозможно. В результате удавалось получить лишь один минимум для электрически нейтральной системы.

Мы привыкли считать, что с увеличением полярности среды на профиле потенциальной энергии реакции диссоциации первона­чально образуется минимум для контактной ионной пары и лишь потом - для разделенной. В действительности это не так. Если растворитель можно рассматривать как непрерывную (континуальную) среду, то минимумы (и локальные, и глобальные) на профиле потенциальной энергии для контактных ионных пар будут отсут­ствовать при любой его полярности. Действительно контактные ион­ные пары в водных растворах практически не образуются, посколь­ку молекулы воды почти непрерывно увеличивают размер гидратационной оболочки с ростом напряженности электрического поля растворенного соединения. Для маленьких ионов образуется до трех гидратационных оболочек. Этот эффект непрерывности не позволяет образовываться контактным ионным парам.

Контактные ионные пары могут существовать только в раст­ворителях, которые имеют качественно иную структуру по срав­нению с водой и в которых сольватная оболочка не может непре­рывно увеличивать свой размер. Например, в ацетонитриле, диметилсульфоксиде и многих других полярных растворителях дипольный момент локализован на одном конце молекулы, а на дру­гом находится неполярная группа большого размера. Для таких растворителей характерны дискретные свойства: после заполнения первого сольватационного слоя происходит резкое уменьшение ве­личины энергии последовательной сольватации и вторая сольват­ная оболочка практически не формируется.

В модель точечных диполей дискретные свойства сред такого типа можно ввести, например, путем ограничения количества то­чечных диполей, которые могут взаимодействовать с растворен­ной молекулой. На рис. 2.3 показаны результаты расчета сечения поверхности потенциальной энергии для реакции переноса протона в предположении, что количество точечных диполей объемом Vт.д= 10-3 нм3 не может превышать 200. Видно, что при таком ограничении количества точечных диполей глобальный минимум соответствует контактным ионным парам. Получить его без введе­ния в использованную сольватационную модель элемента дискрет­ности невозможно.