Фракционная конденсация. При охлаждении газов в первую очередь сжижаются высококипящие компоненты, поэтому содержание их в конденсате выше, чем в равновесной паровой фазе. Это используют для газов разделения, причем конечные т-ры подбирают т. обр., чтобы в конденсате преобладал целевой компонент. Напр., при низкотемпературном ( —138°С) разделении под давл. 1,3 МПа коксового газа, содержащего 2% этилена, получают фракцию с содержанием этилена 50%. В случае прямоточной конденсации (направления движения газа и конденсата совпадают) обе фазы находятся в равновесии. При противоточной конденсации в результате массообмена между стекающим вниз конденсатом и омывающими пов-сть теплообмена газами (фазы неравновесны) жидкая фаза, имеющая т-ру ниже, чем у газовой фазы, дополнительно обогащается высококипящими компонентами.
Ректификация сжиженного газа. Основана на массо- и теплообмене между неравновесными жидкой и паровой фазами. В результате испарения жидкости пары обогащаются низкокипящими компонентами. Поэтому при противотоке фаз и многократном их испарении и конденсации исходную смесь можно разделить на высоко- и низкокипящие компоненты. Процесс осуществляют в ректификац. колоннах, причем для разделения n-компонентной смеси на практически чистые в-ва требуется n — 1 колонн. Возможно разделение азеотропных смесей при добавлении компонента, образующего новое азеотропное соединение. Аналогично поступают при разделении смесей с низкой относит. летучестью. В последнем случае добавление разделит. агента приводит к изменению относит. летучести разделяемых компонентов.
Абсорбция. Возможны как физ. абсорбция, так и хемосорбция, а также их сочетание при использовании водных р-ров абсорбентов. Общие требования к абсорбентам: высокая поглощающая способность, доступность, пожаро-и взрывобезопасность, малое давление паров, нетоксичность, хим. инертность к конструкц. материалам. В отдельных случаях допускается повыш. давление паров абсорбента, хотя это приводит к увеличению его расхода. Напр., при абсорбции жидким азотом Аг, СО и СН4, содержащихся в коксовом газе, газах конверсии метана или генераторных газах, выделяемый Н2 насыщается N2, образуя азотоводородную смесь, необходимую для синтеза NH3. При прочих равных условиях существенное преимущество при выборе абсорбента - его способность к регенерации, т.е. к обратному выделению поглощенных газов. Это требование обязательно при многократной циркуляции абсорбента и в случае возможности полезного применения поглощенных газов. Абсорбция газов широко используется во мн. отраслях пром-сти как конечная стадия получения целевых продуктов, очистки исходных газов от примесей, отравляющих катализаторы, вызывающих коррозию, способных кристаллизоваться и забивать аппаратуру, загрязнять окружающую среду и т.д.
Адсорбция. В кач-ве адсорбентов используют в осн. пористые тела с сильно развитой пов-стью: активные угли, А12О3, силикагели, цеолиты. Физ. адсорбция газа сопровождается выделением теплоты, по кол-ву близкой к теплоте его конденсации, хемосорбция - кол-вом теплоты, соответствующим тепловому эффекту р-ции. Процесс проводят периодически в одном или неск. аппаратах с неподвижным слоем адсорбента либо непрерывно в адсорберах с движущимся или псевдоожиженным слоем адсорбента. Адсорбция применяется для газов разделения при высоких и криогенных т-рах и разл. давлениях, для осушки и очистки газов от примесей, в вакуумной технике, хроматографии и др.
Разделение через мембраны. В этом случае газов разделение реализуется благодаря разл. проницаемости компонентов газовой смеси через разделит. мембраны (пористые и непористые перегородки). Эффективность мембраны определяется ее уд. производительностью, т.е. кол-вом газа, прошедшего через пов-сть мембраны за соответствующее время. Аппараты для мембранного газов разделения - замкнутые объемы, разделенные мембранами на две полости. Движущая сила процесса - поддерживаемая постоянной разность парциальных давлений (или концентраций) газов по обе стороны мембраны. В зависимости от назначения мембраны изготовляют из разл. материалов (стекло, металлы, полимерные материалы), к-рым придают форму пластин, трубок, полых волокон, капилляров. Напр., для выделения Н2 из продувочных газов произ-ва NH3 используют трубки из сплава Pd; для тех же целей применяют полые волокна из полиариленсульфонов. Воздух, обогащенный О2, получают с помощью пластин из поливинилтриметилсилана. Важная характеристика мембранных аппаратов - плотность упаковки мембраны, т.е. пов-сть мембраны, приходящаяся на единицу объема аппарата. Плотность упаковки мембран из полых волокон с наружным диам. 80-100 мкм и толщиной стенки 15-30 мкм составляет 20000 м2/м3, плоских мембран - 60-300 м2/м3. См. также Абсорбция, Адсорбция, Конденсация фракционная, Мембранные процессы разделения, Мембраны разделительные, Ректификация.
===
Исп. литература для статьи «ГАЗОВ РАЗДЕЛЕНИЕ»: Ба га ту ров С. А., Основы теории и расчета перегонки и
ректификации, 3 изд., М., 1974; Ра мм В. М., Абсорбция газов, 2 изд., М.,
1976; Хванг С.-Т., Каммермейер К., Мембранные процессы разделения, пер.
с англ., М., 1981; Беляков В. П., Криогенная техника и технология, М.,
1982; Кельцев Н. В., Основы адсорбционной техники, 2 ИЗА, М., 1984. И.
И. Гельперин.
Страница «ГАЗОВ РАЗДЕЛЕНИЕ» подготовлена по материалам химической энциклопедии.