Возможно, однако, что при образовании металлических производных происходит изомеризация амида и получающееся соединение имеет изомерное (таутомерное) строение соли имидокислоты
т. е. здесь имеет место аналогия с солями синильной кислоты.
2. Действие азотистой кислоты С азотистой кислотой амиды реагируют, подобно первичным аминам, с образованием карбоновых кислот и выделением азота:
3. Омыление При кипячении с минеральными кислотами и щелочами амиды присоединяют воду, образуя карбоновую кислоту и аммиак:
4. Действие галоидных алкилов. При действии галоидных алкилов на амиды или их металлические производные получаются N-замещенные амиды:
5. Действие пятихлористого фосфора. При действии пятихлористого фосфора на амиды получаются хлорамиды
легко распадающиеся на соляную кислоту и имидхлориды
Последние с аммиаком могут давать соли амидинов;
6. Превращение в амины. Энергичным восстановлением амидов могут быть получены первичные амины с тем же числом атомов углерода:
7. Реакция Гофмана. При действии на амиды гипогалогенита или брома и щелочи образуются амины, а углеродный атом карбонильной группы отщепляется в виде СО2 (А. Гофман). Ход реакции можно представить так:
В учебных руководствах до сих пор еще часто встречается другое толкование механизма этой реакции:
Однако такой ход реакции менее правдоподобен, так как образование осколка
с атомом азота, несущим две свободные электронные пары, мало вероятно.
Против этого механизма говорит, в частности, тот факт, что если радикал R оптически деятельный, то он не рацемизуется в результате реакции. Между тем даже мимолетное существование свободного радикала R–: привело бы к потере оптической деятельности.
Следует подчеркнуть, что в реакциях Гофмана, Курциуса и Лоссена происходят совершенно аналогичные перегруппировки:
Вероятно, все эти перегруппировки имеют сходный механизм.
■