Спектроскопические методы исследования органических веществ

Возможность изучения размеров и формы отдельных молекул и относительного расположения в них атомов и радикалов, и особенно результаты рентгеноструктурных исследований, дали новый толчок изучению физических свойств веществ с целью более глубокого проникновения в детали структуры молекул. Особенно интересны исследования электрических и магнитных свойств кристаллов, в частности оптической, электрической и магнитной анизотропии, в зависимости от тонкой структуры кристалла.

В настоящее время для исследования строения органических веществ широ,ко применяется изучение их инфракрасных, видимых и ультрафиолетовых спектров поглощения. Инфракрасные и комбинационные спектры связаны с колебательными и вращательными движениями атомов (точнее, ядер атомов), видимые и ультрафиолетовые спектры обязаны своим происхождением электронным переходам.

Молекулярные спектры имеют значительно более сложную структуру по сравнению с атомными спектрами. Эта сложность молекулярных спектров обусловлена тем, что в процессах, связанных с энергетическими переходами в молекуле наряду с электронами участвуют и ядра, движение которых и находит свое отображение в молекулярных спектрах. Ядра атомов в молекуле могут совершать два рода движений: вращательное движение вокруг центра тяжести молекулы и колебательное движение около некоторых положений равновесия. Оба рода движений являются квантованными, что, в частности, проявляется в дискретной структуре молекулярных спектров.

Молекулярные спектры можно разделить на три класса: вращательные спектры, связанные с вращением ядер в молекуле, колебательные спектры, связанные с колебанием ядер, и электронные спектры, связанные с движением электронов (электронные переходы). Первые два рода спектров лежат в инфракрасной области.

Если изучение атомных спектров дало ряд ценнейших сведем ний для создания теории атома, то изучение молекулярных спектров играет очень важную роль при исследовании строения молекул. При помощи спектроскопических исследований можно найти межатомные расстояния в молекулах, собственные частоты колебаний ядер и др. Эти данные вместе с дипольными моментами, а также с данными рентгенографического и электронографического анализа дают возможность составить надежное детальное представление о строении молекул. Спектроскопическими методами можно определить также энергию диссоциации молекул. Пользуясь молекулярным спектральным анализом, можно производить идентификацию химических соединений и измерять их концентрации.