Иммобилизованные ферменты
ИММОБИЛИЗОВАННЫЕ ФЕРМЕНТЫ (от лат. immobiiis - неподвижный), препараты ферментов, молекулы к-рых связаны с матрицей, или носителем (как правило, полимером), сохраняя при этом полностью или частично свои каталитич. св-ва. Иммобилизованные ферменты обычно не раств. в воде; между двумя фазами возможен обмен молекулами субстрата, продуктов каталитич. р-ции, ингибиторов и активаторов. Существует неск. осн. способов иммобилизации ферментов: 1) путем образования ковалентных связей между ферментом и матрицей; 2) полимеризацией мономера, образующего матрицу, в присут. фермента, к-рый при этом оказывается включенным в сетку полимера - обычно геля; 3) благодаря электростатич. взаимод. противоположно заряженных групп фермента и матрицы; 4) сополимеризацией фермента и мономера, образующего матрицу; 5) связыванием фермента и матрицы в результате невалентных взаимод. - гидрофобных, с образованием водородных связей и др.; 6) инкапсулированием - созданием около молекул фермента полупроницаемой капсулы, напр., включением фермента в липосомы; 7) сшиванием молекул фермента между собой, напр., глутаровым альдегидом, диметиловым эфиром диимида адипиновой к-ты. Особый случай иммобилизации проведение ферментативных р-ций в двухфазной системе, когда фермент находится в водной фазе, а субстраты и продукты р-ции распределяются между орг. и водной фазами, что позволяет в зависимости от коэф. распределения в-в между фазами сдвигать равновесие р-ции в нужную сторону; диспергирование фаз увеличивает пов-сть их раздела и тем самым улучшает доступ субстрата к ферменту. Среди способов иммобилизации наиб. распространение получили ковалентное связывание фермента с матрицей и включение фермента в гель. В первом случае в качестве матрицы обычно используют целлюлозу, декстрановые гели (сефароэу, агарозу), микропористые стекла или кремнеземы, а также синтетич. полимеры. Матрицу при ковалентной иммобилизации ферментов обычно предварительно активируют, обрабатывая, напр., бромцианом, азотистой к-той или цианурхлоридом. Благодаря этому она становится носителем активных группировок, к-рые способны вступать в р-цию сочетания, взаимод. с группами NH2, ОН, СООН. Во втором случае в качестве гелеобразующего полимера используют полиакриламид. На практике иммобилизация часто осуществляется одновременно неск. способами. Так, при фиксации ферментов ковалентными связями между их молекулами и матрицей обычно возникают также нековалентные взаимодействия. Известны способы предварит. хим. модификации молекул фермента низкомол. в-вами или р-римыми полимерами, имеющими заряженные группировки, что изменяет у таких модифицир. белков электростатич. заряд молекулы и позволяет достаточно прочно сорбировать их на ионообменных смолах. При всех типах иммобилизации матрица, взаимодействуя с ферментом, может инактивировать последний или создавать пространств. затруднения для доступа субстрата к активному центру. При ковалентном связывании фермента для предотвращения отрицат. влияния матрицы между ней и молекулой фермента вводят разобщающую цепь атомов - спейсер (наз. также "вставкой" или "ножкой"). Кроме того, часто стремятся использовать для иммобилизации гидрофильные матрицы, создающие вблизи фермента более естеств. микроокружение. При иммобилизации ферментов необходимо, чтобы активные группы матрицы не блокировали каталитич. центр фермента, а условия иммобилизации не приводили к потере его активности.Литература
Иммобилизованные ферменты. Современное состояние и перспективы, под ред. И. О. Березина, т. 1-2, М., 1976; Козлов Л. В., "Биоорганическая химия", 1980, т. 6, № 8, с. 1243-54; Введение в прикладную этимологию. Иммобилизованные ферменты, под ред. И. В. Березина, К. Мартинека, М., 1982; Тривен М., Иммобилизованные ферменты. Вводный курс и применение в биотехнологии, М., 1983. Л. В. Козлов.
Ещё по теме
Иммобилизованные ферменты — свойства и применение
Применение ферментов в промышленности и медицине
Мультимолекулярные ферментные системы — структура и функции
Ферментативные методы анализа в химии — принципы и применение
Механизмы активации и ингибирования ферментов — роль металлов в биохимии
Механизмы регуляции активности ферментов
Ферментативный катализ — основы и применение
Механизмы регуляции метаболизма
Мембранные механизмы регуляции метаболизма
Механизмы действия ферментов — от структуры к функции
Ферментсодержащие волокна — свойства и применение
Стабилизация полимеров
Регуляция активности ферментов