Стереохимия, область химии, изучающая пространственное строение молекул и влияние этого строения на физические свойства (статическая стереохимия), на направление и скорость реакций (динамическая стереохимия). Объектами изучения стереохимии служат главным образом органические вещества, а из неорганических — комплексные и внутри комплексные (хелатные) соединения (см. Комплексные соединения).

  Основы стереохимии заложены в работах Л. Пастера (1848), изучавшего изомерию винных кислот, а также Я. Вант-Гоффа и Ж. Ле Беля, которые в 1874 одновременно и независимо друг от друга выдвинули фундаментальную стереохимическую идею о том, что четыре валентности насыщенного атома углерода направлены к вершинам правильного тетраэдра. В дальнейшем тетраэдрическая модель получила прямое подтверждение при исследовании молекул физическими методами (см. Рентгеновский структурный анализ).

  Важная область современной стереохимииконформационный анализ, рассматривающий пространственную форму молекул (конформацию). Стереохимия изучает также пространственную изомерию (стереоизомерию): изомеры, имеющие одинаковый состав молекул и одинаковое химическое строение, но отличающиеся друг от друга расположением атомов в пространстве. Стереоизомерию подразделяют на оптическую (зеркальную), проявляющуюся в существовании оптических антиподов (см. Оптически-активные вещества), и диастереомерию, при которой обнаруживаются пространственные изомеры, не имеющие характера оптических антиподов (см. Диастереомеры). Частный случай диастереомерии — геометрическая изомерия (цис- транс-изомерия), наблюдаемая у соединений этиленового ряда и в неароматических циклах (см. Изомерия). Специфическая задача стереохимии — получение индивидуальных изомеров, определение их конфигурации и изучение свойств.

  В современной стереохимии очень широко используют физические и физико-химические методы. Так, рентгено- и электронографическими методами определяют межатомные расстояния, валентные углы и тем самым находят картину расположения атомов в молекуле. Стереохимическую информацию можно получить также из измерений дипольных моментов (см. Диполь), из спектров ядерного магнитного резонанса и данных инфракрасной и ультрафиолетовой спектроскопии, из измерений оптической активности. Пространственное строение молекул может быть предсказано также расчётными квантово-химическими методами.

  Классическая стереохимия была лишь отвлечённой теоретической областью науки. Современная стереохимия приобрела и большое практическое значение. Так, установлено, что свойства полимеров сильно зависят от их пространственного строения. Это относится как к синтетическим полимерам (например, полистирол, полипропилен, бутадиеновый и изопреновый каучуки), так и к природным высокомолекулярным соединениямполисахаридам, белкам, нуклеиновым кислотам, натуральному каучуку. Пространственное строение существенно влияет и на физиологические свойства веществ; от него, в частности, зависит активность многих лекарственных препаратов. Поэтому стереохимия имеет большое значение для химии и технологии полимеров, биохимии и молекулярной биологии, медицины и фармакологии.

  Стереохимия помогает также решению проблем теоретической неорганической и органической химии (например, при изучении механизмов органических реакций). Так, исчезновение оптического вращения (рацемизация) при замещении у асимметричного атома служит признаком мономолекулярного нуклеофильного замещения (механизм SN1); явление вальденовского обращения — признаком бимолекулярного нуклеофильного замещения (механизм SN2) (см. Замещения реакции).

  Измерение оптической активности — важный метод количественного определения оптически-активных веществ в сахарной промышленности (см. Сахариметрия), в производстве лекарственных препаратов, душистых веществ.

 

  Лит.: Илиел Э., Основы стереохимии, пер. с англ., М., 1971; Потапов В. М., Стереохимия, М., 1975.

  В. М. Потапов.