Поверхностное натяжение
ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ, стремление в-ва (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию). Определяется как работа, затрачиваемая на создание единицы площади пов-сти раздела фаз (размерность Дж/м2). Согласно др. определению, поверхностное натяжение-сила, отнесенная к единице длины контура, ограничивающего пов-сть раздела фаз (размерность Н/м); эта сила действует тангенциально к пов-сти и препятствует ее самопроизвольному увеличению.
Поверхностное натяжение-осн. термодинамич. характеристика поверхностного слоя жидкости на границе с газовой фазой или др. жидкостью. Поверхностное натяжение разл. жидкостей на границе с собств. паром изменяется в широких пределах: от единиц для сжиженных низкокипящих газов до неск. тыс. мН/м для расплавл. тугоплавких в-в. Поверхностное натяжение зависит от т-ры. Для мн. однокомпо-нентных неассоциир. жидкостей (вода, расплавы солей, жидкие металлы) вдали от критич. т-ры хорошо выполняется линейная зависимость:

где s и s0-поверхностное натяжение при т-рах T и T0 соотв., a
0,1 мН/(м·К)-температурный коэффициент поверхностного натяжения. Осн. способ регулирования поверхностного натяжения заключается в использовании поверхностно-активных веществ (ПАВ).
Поверхностное натяжение входит во мн. ур-ния физики, физ. и коллоидной химии, электрохимии. Оно определяет след. величины: 1) капиллярное давление
, где r1 и r2 -главные радиусы кривизны пов-сти, и давление насыщ. пара рr над искривленной пов-стью жидкости:
, где r-радиус кривизны пов-сти, R -газовая постоянная, Vn-молярный объем жидкости, p0- давление над плоской пов-стью (законы Лапласа и Кельвина, см. Капиллярные явления).
2) Краевой угол смачивания
в контакте жидкости с пов-стью твердого тела: cos
, где
-уд. своб. поверхностные энергии твердого тела на границе с газом и жидкостью,
-поверхностное натяжение жидкости (закон Юнга, см. Смачивание).
3) Адсорбцию ПАВ
где m-хим. потенциал адсорбируемого в-ва (ур-ние Гиббса, см. Адсорбция). Для разб. р-ров
где с-молярная концентрация ПАВ.
4) Состояние адсорбц. слоя ПАВ на пов-сти жидкости: (ps + a/A2)·(A - b)= kT, где ps = (s0 — s) - двухмерное давление, s0 и <т-соответственно поверхностное натяжение чистой жидкости и той же жидкости при наличии адсорбц. слоя, а -постоянная (аналог постоянной Ван-дер-Ваальса), A-площадь поверхностного слоя, приходящаяся на одну адсорбир. молекулу, b -площадь, занимаемая 1 молекулой жидкости, k -постоянная Больцмана (ур-ние Фрумкина-Фольмера, см. Поверхностная активность).
5)Электрокапиллярный эффект: — ds/df = rs, где rs-плотность поверхностного заряда, f-потенциал электрода (ур-ние Липмана, см. Электрокапиллярные явления).
6) Работу образования критич. зародыша новой фазы Wc. Напр., при гомог. конденсации пара при давлении
, где p0- давление пара над плоской поверхностью жидкости (ур-ние Гиббса, см. Зарождение новой фазы).
7) Длину l капиллярных волн на пов-сти жидкости:
, где r-плотность жидкости, т-период колебаний, g-ускорение своб. падения.
8) Упругость жидких пленок со слоем ПАВ: модуль упругости
, где s- площадь пленки (ур-ние Гиббса, см. Тонкие пленки).
Поверхностное натяжение измерено для мн. чистых в-в и смесей (р-ров, расплавов) в широком интервале т-р и составов. Поскольку поверхностное натяжение весьма чувствительно к наличию примесей, измерения разными методиками не всегда дают совпадающие значения. Осн. методы измерения следующие:
1) подъем смачивающих жидкостей в капиллярах. Высота подъема
, где
-разность плотностей жидкости и вытесняемого газа, r-радиус капилляра. Точность определения поверхностного натяжения растет с уменьшением отношения r/а (а-капиллярная постоянная жидкости).
2) Измерение макс. давления в газовом пузырьке (метод Ребиндера); расчет основан на ур-нии Лапласа. При выдавливании пузырька в жидкость через калиброванный капилляр радиусом г перед моментом отрыва давление
3) Метод взвешивания капель (сталагмометрия):
(ур-ние Тейта), где G-общий вес n капель, оторвавшихся под действием силы тяжести от среза капиллярной трубки радиусом r. Для повышения точности правую часть умножают на поправочный коэф., зависящий от г и объема капли.
4) Метод уравновешивания пластины (метод Вильгельми). При погружении пластины с периметром сечения L в смачивающую жидкость вес пластины
, где G0- вес сухой пластины.
5) Метод отрыва кольца (метод Дю Нуи). Для отрыва проволочного кольца радиусом R от пов-сти жидкости требуется сила 
6) Метод сидящей капли. Профиль капли на несмачиваемой подложке определяется из условия постоянства суммы гидростатич. и капиллярного давлений. Дифференциальное ур-ние профиля капли решается численным интегрированием (метод Башфорта-Адамса). По измерениям геом. параметров профиля капли с помощью соответствующих таблиц находят поверхностное натяжение.
8) Метод вращающейся капли. Капля жидкости плотностью r1 помещается в трубку с более тяжелой (плотность r2) жидкостью. При вращении трубки с угловой скоростью w капля вытягивается вдоль оси, принимая приближенно форму цилиндра радиуса r. Расчетное ур-ние:
. Метод применяют для измерения малых поверхностных натяжений на границе двух жидкостей.
Поверхностное натяжение является определяющим фактором мн. технол. процессов: флотации, пропитки пористых материалов, нанесе-ния покрытий, моющего действия, порошковой металлургии, пайки и др. Велика роль поверхностного натяжения в процессах, происходящих в невесомости.
Понятие поверхностного натяжения впервые ввел Я. Сегнер (1752). В 1-й пол. 19 в. на основе представления о поверхностном натяжении была развита мат. теория капиллярных явлений (П. Лаплас, С. Пуассон, К. Гаусс, А.Ю. Давидов). Во 2-й пол. 19 в. Дж. Гиббс развил термодинамич. теорию поверхностных явлений, в к-рой решающую роль играет поверхностное натяжение. В 20 в. разрабатываются методы регулирования поверхностного натяжения с помощью ПАВ и электрокапиллярных эффектов (И. Ленгмюр, П. А. Ребиндер, A. H. Фрумкнн). Среди совр. актуальных проблем-развитие мол. теории поверхностного натяжения разл. жидкостей (включая расплавл. металлы), влияние кривизны пов-сти на поверхностное натяжение.
Лит.: Семенченко В. К., Поверхностные явления в металлах и сплавах, M., 1957; Оно С., Кон до С., Молекулярная теория поверхностного натяжения в жидкостях, пер. с англ., M., 1963; Русанов А. И., Фазовые равновесия и поверхностные явления, Л., 1967; Ребиндер П. А., Избранные труды. Поверхностные явления в дисперсных системах. Коллоидная химия, M., 1978; АдамсонА., Физическая химия поверхностей, пер. с англ., M., 1979; Гиббс Дж. В., Термодинамика. Статистическая механика, M., 1982; Щукин E. Д., ПерцовА. В., Амелина E. А., Коллоидная химия, M., 1982.
Б. Д. Сумм.