Перхлораты

ПЕРХЛОРАТЫ, соед., содержащие тетраэдрич. группировку ClO4. Условно различают ионные, ковалентные и координационные перхлораты. В ионных перхлоратах-солях HClO4-группа3536-41.jpg отрицательно заряжена (заряд —1). К ним относятся перхлораты щелочных и щел.-зем. металлов, а также мол. катионов типа 3536-42.jpg, 3536-43.jpg, [M(H2O)n]+ и др. В ковалентных перхлоратах группа ClO4 связана с остальной частью молекулы ковалентной связью через атом кислорода (R—О—ClO3), она имеет структуру тригональной пирамиды, ее заряд меньше 1 (по абс. величине). К ковалентным перхлоратам относятся хлорная к-та, ее ангидрид Cl2O7 и эфиры, перхлораты галогенов. В большинстве перхлоратов переходных и непереходных металлов (кроме щелочных и щел.-зем.) группа ClO4 связана с атомом металла частично ковалентной координац. связью через один, два или три атома О, будучи соотв. моно-, би- и тридентатным лиган-дом. Характерное св-во таких перхлоратов-способность образовывать координационные перхлораты анионного типа 3536-44.jpg , где n= 2 — 8. Границы между группами перхлоратов нестрогие; напр., перхлораты бора, Si, I, большинства металлов (кроме щелочных и щел.-зем.) можно отнести и к ковалентным и к координационным, а перхлораты серебра, Pb, Sc и РЗЭ - и к координационным, и к ионным.

Сродство к электрону радикала ClO4 очень высокое (5,82 эВ). Радиус иона 3536-45.jpg 0,236 нм, 3536-46.jpg в газе -355,6 кДж/моль, а в разб. водном р-ре —129,16 кДж/моль. Распад всех перхлоратов экзотермичен.

Хлорная кислота H—О—ClO3-бесцв. летучая жидкость, сильно дымящая на воздухе, в парах мономерна; длины связей Cl—ОН 0,1635 нм, Cl=O 0,1408 нм, О—H 0,098 нм, углы OClO 112,8°, HOClO 106,2°. Т.пл. -101 0C, т.кип. 106 0C (с разл.); плотн. 1,7608 г/см3; ур-ние температурной зависимости давления пара lg p (мм рт. ст.) = 8,175 — 2007/T, 3536-47.jpg 120,5 Дж/(моль·К); 3536-48.jpg : -40,4 кДж/моль,3536-49.jpg -78,5 кДж/моль; 3536-50.jpg 188,4 Дж/(моль·К); r 1,351·102 Ом·см; e 118 (298 К); h 0,795·10-3 Па·с. Жидкая HClO4 частично димеризована, для нее характерна равновесная автодегидратация:

3536-51.jpg

При 25 0C константа равновесия К 3536-52.jpg0,7·10-6. Если пары HClO4 сконденсировать ниже 0 0C, равновесие устанавливается в течение неск. часов. Присутствие небольшой равновесной концентрации Cl2O7 (~0,16 M) определяет низкую термич. стабильность жидкой HClO4; в парах, где равновесие полностью сдвинуто влево, распад идет при 200-350 0C, в жидкой фазе-при 57-77 0C. Пар над 100%-ной HClO4 содержит 11 мол. % Cl2O7 и 89% HClO4. Продукты термич. разложения хлорной к-ты-O2, Cl2, ClO2, Cl2O6, HClO43536-53.jpg2H2O.

В присут. ингибиторов (CCl3COOH, C2HCl5, CHCl3 и др.) и при разбавлении водой термич. стабильность жидкой HClO4 повышается. Распад HClO4 в парах катализируют оксиды переходных металлов (CuO, Fe2O3, Cr2O3 и др.).

Хлорная к-та хорошо раств. в CF3COOH, CHCl3, CH2Cl2 и др. хлорир. углеводородах, однако совмещение ее с р-рите-лями, способными окисляться, как правило, приводит к воспламенению и взрыву. В безводной HClO4 раств. ионные перхлораты; при 0 0C р-римость (г в 100 г HClO4): KClO4 4,3, RbClO4 22,6, CsClO4 68,4. Перхлораты цезия, Rb, 3536-54.jpg и др. крупных катионов кристаллизуются из HClO4 в виде нестабильных комплексов M[H(ClO4)2], легко теряющих молекулу HClO4 в вакууме.

Известны восемь гидратов HClO4 (табл. 1). Моногидрат 3536-55.jpg -ионный перхлорат; 3536-56.jpg 382,0 кДж/моль; в кристал-лич. структуре остальных гидратов присутствуют гидратир. протоны 3536-57.jpg, 3536-58.jpg , 3536-59.jpg ; входящие в состав кристаллогидратов молекулы воды связаны с ионами 3536-60.jpg водородными связями. При -25 0C моногидрат переходит в моноклинную модификацию (пространств. группа Р21/п). Азеотроп с водой имеет т. кип 203 0C (0,1 МПа) и содержит 72,4% HClO4, пар над р-рами выше этой концентрации обогащен HClO4, ниже-водой.

Хлорная к-та-одна из сильнейших неорг. к-т, в ее среде соед. даже явно кислотного характера ведут себя как основания, присоединяя протон и образуя катионы ацилпер-хлоратов, напр. 3536-61.jpg , 3536-62.jpg, 3536-63.jpg. В безводной HClO4, а также в р-рах щелочных перхлоратов и Cl2O7 в HClO4 возможен синтез перхлоратов большинства металлов в несоль-ватир. состоянии.

Конц. HClO4-сильнейший окислитель, контакт ее с большинством орг. материалов приводит к воспламенению и взрыву. Окислит. активность к-ты с концентрацией менее 72% значительно ниже, а термич. устойчивость - выше, чем у 95-100%-ной HClO4.

Водные р-ры HClO4 получают анодным окислением р-ра соляной к-ты или Cl2, р-р, близкий по составу к дигидра-ту, - ректификацией более разб. р-ров, 100%-ную HClO4-отгонкой из смеси HClO4·2H2O с олеумом. Водные р-ры HClO4 применяют в аналит. химии для растворения металлов, "влажного сожжения" орг. в-в и как стандарт в ациди-метрии; как компонент полировальных ванн для металлов.

Ионные перхлораты- перхлораты щелочных и щел.-зем. металлов -бесцв. кристаллы (табл. 2). Перхлораты всех щелочных металлов, кроме Li, диморфны; при обычных условиях устойчива ромбич. модификация, при высоких т-рах - кубическая. Перхлорат Sr также диморфен, перхлораты Ca и Ba имеют по три модификации. Все перхлораты, кроме солей К, Rb и Cs, гигроскопичны и образуют гидраты, напр. Са(СlО4)2·4H2O (т.пл. 75,6 0C), Sr(ClO4)2·H2O (т.пл. 155 0C).

Табл. 1.- НЕКОТОРЫЕ СВОЙСТВА HClO4 ·nН2О

n

Сингония

Пространств. группа

Т.пл., 0C

0.25



-73,0*

1

Ромбич.

Pnma

49,90

2

Ромбич.

Pnma

-20,6

2,5

Моноклинная

P21/c

-32,1

3

Ромбич.

Pbca

-40,20

3,5

Ромбич.

Pbca

-45,60

4



-57,7*

5,5

Кубич.


-50,4

* Инконгруэнтно.

Табл. 2.-СВОЙСТВА ПЕРХЛОРАТОВ ЩЕЛОЧНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Перхлорат


Пространств. группа низкотемпературной модификации

Т-ра поли-морфного перехода, 0C

Т.пл., 0C

Т-ра начала быстрого разложения, 0C

Плотн., г/см3

3536-64.jpg

Дж/(моль·К)

3536-65.jpg

кДж/моль

3536-66.jpg

кДж/моль

Р-римость в воде при 25 0C, г в 100 г

LiClO4



247,6

438

2,432

104,7

-380,87

-252,3

37,38

NaClO4

Cmcm

306,1

469*

525

2,495

110,3

-384,42

-255,5

67,70

KClO4

Pnma

298,0

580*

580

2,536

108,0

-432,42

-303,5

2,02

RbClO4

Pnma

281,1

597*

597

3,035

109,4

-436,73

-306,5

1,32

CsClO1

Pnma

221,8

577*

577

3,319

110,4

-442,62

-310,6

1,93

Ca(ClOJ2


340,8 410


477

2,651

185,3

-735,76

-412,3

65,35

Sr(ClO4)2


288


472

2,947

187,8

-768,48

-514,8

75,59

Ba(ClO4)2


284 350


477

3,574

185,8

-785,29

-526,0

66,48

* С разложением.

Табл. 3.-СВОЙСТВА ОНИЕВЫХ ПЕРХЛОРАТОВ

Перхлорат

Сингония

Пространств. группа

Т.пл., 0C

Т-ра медленного разложения,

Плотн., г/см3

3536-67.jpg

кДж/моль

N2H5ClO4

Моноклинная

C2/c

142

140-190

1,939

-173,8

NH3OHClO4

Ромбич.

P21сn

89

110-150

2,065

-281,6

C(NH2)3ClO4

Тригон.

R3

248

275-400

1,743

-311,7

C(NH2)2NHNO2ClO4



Разлага-ется

100-120

1,932

-211,5

NOClO4

Ромбич.

Рпта

То же

100-140

2,169

52,3

NO2ClO4

Моноклинная

C2/c

— " —

100-150

2,220

39,0

(CH3)2N (NH2)2ClO4



— " —

120-140

1,56

-69,7

Ионные перхлораты почти количественно разлагаются при нагревании до хлорида металла и O2 с промежут. образованием хлората. В присут. SiO2 и др. термически устойчивых кислотных оксидов в продуктах распада появляется Cl2. Оксиды переходных металлов, особенно Ni, Со и Mn, снижают т-ру разложения перхлоратов. Еще более понижают т-ру разложения ионных перхлоратов оксиды или пероксиды щелочных металлов. Перхлораты хорошо раств. в воде и полярных орг. и неорг. р-рите-лях-спиртах, ацетоне, гидразине, H2O2- и образуют с ними сольваты. Конц. р-ры перхлоратов в окисляемых жидкостях взрывоопасны. В жидком состоянии перхлораты щелочных и щел.-зем. металлов неограниченно раств. друг в друге, образуя эвтектики; т-ры плавления эвтектик: 205 0C NaClO4—LiClO4 (71,5 мол. %); 207 0C KClO4—LiClO4 (76,0%); 234 0C Ca(ClO4)2— LiClO4 (76,9%); 293 0C Ca(ClO4)2—NaClO4 (44,9%).

Ион 3536-68.jpg устойчив к действию большинства восстановителей в водном р-ре, количественно восстанавливается до 3536-69.jpg только под действием солей Ti(III), Mo(III) и V(III) в кислой среде. Перхлораты металлов II гр. и нек-рые другие выше 200 0C реагируют с пероксидами и супероксидами щелочных металлов:

3536-70.jpg

Р-ция может протекать в режиме самораспространения.

Перхлораты получают анодным окислением хлоратов или хлоридов металлов в водном р-ре или р-цией водной HClO4 с карбонатом или оксидом соответствующего металла. Перхлораты легких щелочных и щел.-зем. металлов отличаются высоким содержанием кислорода: LiClO4-60,15%, NaClO4-52,27%, КСlO4-46,19%, Ca(ClO4)2-53,35%. Объемное содержание кислорода в перхлорате соизмеримо с его содержанием в жидком и твердом кислороде. На этом основано применение перхлоратов в качестве высокоемких твердых кислородоносителей в хим. источниках кислорода (см. Пиротехнические источники газов), в смесевых BB и в пиротехн. составах.

Ониевые перхлораты 3536-71.jpg . Хлорная к-та способна присоединяться к любым орг. и неорг. соед., имеющим сродство к протону, с образованием ониевых катионов: R + HClO4 3536-72.jpg . Известно неск. сотен таких соед., наиб. изучены перхлораты, где RH+-NH4+, H3O+, N2H5+, NH3OH + , (NH2)2COH+ и др. Большинство ониевых перхлоратов-бесцв. кристаллы; хорошо раств. в воде и полярных неводных средах. При быстром нагревании разлагаются со вспышкой или взрывом, а при медленном нагревании, особенно в вакууме, обратимо диссоциируют на HClO4 и исходное основание. Перхлораты нек-рых катионов, таких, как тетраалкил(или арил)аммоний, фосфоний и арсоний, триалкилсульфоксоний и др., отличаются большей термич. стабильностью.

Отдельную группу ониевых перхлоратов составляют т. наз. ацил-перхлораты - продукты взаимод. HClO4 с неорг. кислородными к-тами: с H2SeO3-H3SeO3+ClO4- , с H3PO4-P(OH)4+ClO4- ; с HNO3 образуется не H2NO3+ClO4- , а продукт его дегидратации-перхлораты нитрила (или нитрония) NO2+ClO4-; с HNO2 или N2O3- перхлораты нитрозила (нитрозония) NO+ClO4-. Соед. NO2ClO4 бесцв., гигроскопично, устойчиво до 100 0C; объемное содержание кислорода в нем (1,465 г/см3) выше, чем в твердом O2 при 46 К (1,364 г/см3); разлагается на элементы с выделением энергии.

Перхлораты с катионами N2H5+, N2H62+ , NH3OH+, NO2+, (CH3)2N(NH2)2+- выcoкоэнeргетичные окислители. В пром-сти перхлораты гидразония и гидроксиламмония получают действием HClO4 на водные р-ры соответствующих оснований или солей; NO2ClO4-р-цией безводных HClO4 и HNO3 либо из ClO2, NO2 и O3 в газовой фазе. Осн. св-ва ониевых перхлоратов представлены в табл. 3.

Ковалентные перхлораты R—О—ClO3, где R-галоген, алкил, галогеналкил и арил,-летучие жидкости, газы или легколетучие твердые в-ва; термически неустойчивы, склонны к взрывному распаду. Перхлораты фтора FClO4-бесцв. газ; т.пл. -166 0C, т. кип.-16 0C; выше 67 0C распадается на FClO2 и O2, при —43 0C реагирует с фторалкенами, присоединяясь по двойной связи, напр.: CF2=CF2 + FClO4 3536-73.jpg CF3CF2ClO4; получают р-цией F2 с 72%-ной HClO4 или разложением NF4ClO4. Перхлораты хлора ClOClO3-светло-желтая жидкость; т. пл. - 117 0C, т. кип. 44,5 0C; плоти. 1,98 г/см3 при -79,3 0C; уже при комнатной т-ре медленно распадается на Cl2, O2 и Cl2O6; получают из ClSO3F и CsClO4 или NO2ClO4; реагент для получения др. ковалентных перхлоратов, напр, при р-ции с Br2 образуется перхлорат брома BrClO4 (красная жидкость, разлагающаяся выше -23 0C), с I2-перхлорат иода I(ClO4)3 (бесцв. кристаллы, устойчивые до -43 0C). Перхлораты брома и иода с ионными перхлоратами образуют комплексы типа Cs[Br(ClO4)2] и Cs[I(ClO4)4], устойчивые при комнатной т-ре. Перхлорат I+ не получен.

Перфторалкилперхлораты: CF3ClO4-бесцв. газ с т. кип. 10 0C; CF3CF2ClO4 имеет т. кип. 28 0C; с ростом длины фторалкильной цепи падает летучесть и растет т-ра плавления. Перфторалкилперхлораты отличаются устойчивостью к гидролизу и более высокой термич. стабильностью среди др. ковалентных перхлоратов. Так, CF3ClO4 начинает распадаться на COF2 и FClO3 выше 100 0С. Получают фторал-килперхлораты действием ClOClO3 на фторалкилиодиды.

Трихлорметилперхлорат CCl3ClO4-бесцв. газ; т.пл. -55 0C; водой быстро гидролизуется, при нагревании и контакте с этанолом детонирует; получают р-цией AgClO4 с CCl4.

Эфиры HClO4-летучие бесцв. жидкости; нестабильны и взрывоопасны. Метилперхлорат CH3ClO4 имеет т.кип. 52 0C, этилперхлорат C2H5ClO4 89 0C; с увеличением длины алкильного радикала растут т-ры плавления и кипения перхлоратов. Известны органические перхлораты с двумя геминальными группами ClO4-(СН3)2С(СlO4)2 и С2Н5(СН3)С(СlO4)2, полученные действием р-ра HClO4 в CH2Cl2 на соответствующие кетоны. К ковалентным перхлоратам относятся также производные алкил- и арилсиланов R3SiClO4: т. кип. при R = = СН3 35-38 °С/14 мм рт.ст., R = C2H5 45-46 °С/1 мм рт.ст., R = C3H7 75-76°С/1 мм рт.ст.; (C6H5)3SiClO4-кристаллы, разлагаются со взрывом при 177 0C.

Координационные перхлораты. Содержат ион ClO4 во внутр. коор-динац. сфере; помимо группы ClO4 могут содержать и др. лиганды. В качестве центр, атома м. б. любые металлы, кроме щелочных и щелочноземельных, но в парах и в условиях матричной изоляции ионы щелочных металлов также образуют координац. связи с ионом3536-74.jpg

Бериллий образует соед. с бидентатной-Ве(С1О4)2, Ве4О(СlO4)6 или монодентатной M2[Be(ClO4)4] (где M-щелочной металл или 3536-75.jpg ) координацией групп ClO4. Магния перхлорат Mg(ClO4)2 дает со щелочными перхлоратами комплексы M[Mg(ClO4)3], термически более устойчивые, чем он сам. Безводный Zn(ClO4)2 известен в двух модификациях, не переходящих друг в друга ниже 100 0C; т.пл. 262 0C, т.разл. 267-337 0C; с MClO4 образует комплексы M[Zn(ClO4)3], а с NaClO4 - еще и Na[Zn2(ClO4)5]. Для Hg известны два перхлората: Hg(ClO4)2-крайне агрессивное бесцв. в-во, т.пл. 170 0C, разлагается в интервале 170-327 0C на HgO и HgCl2, мгновенно реагирует с CCl4, давая HgCl2; Hg2 (ClO4)2 менее агрессивен, более устойчив, разлагается при 227-247 0C с промежут. образованием оксиперхлората Hg(ClO4)2·2HgO.

Перхлорат бора В(С1О4)3-бесцв. твердое в-во, разлагающееся уже при комнатной т-ре; с перхлоратами цезия, Rb, К, NO2+ и NH4 образует M [В(ClO4)4], разлагающиеся на MClO4, B2O3 и оксиды хлора выше 25 0C. Аl(СlО4)3-кристаллы с гексагон. решеткой; возгоняется в вакууме выше 100 0C; в интервале 147-427 0C распадается до Al2O3, Cl2 и O2 с промежут. образованием Al2O(ClO4)4 и AlOClO4; известны перхлоратоалюминаты: M[Al(ClO4)4], где M = Rb, Cs, NH4+, ClO2; M2[Al(ClO4)5], где M = Li-Cs, NH4+; M3[Al(ClO4)6], где M = NH4+.

Перхлораты РЗЭ известны в виде гидратов и сольватов, лишь немногие из них получены в несольватир. состоянии; по термич. стабильности они приближаются к ионным перхлоратам, однако способны координировать дополнит. ионы ClO4 , образуя перхлоратометаллаты. Перхлораты титана, Zr и Hf существуют только в безводном состоянии, в воде они подвергаются гидролизу и из водных р-ров выделяются в виде гидратированных оксиперхлоратов. Перхлораты Ti, Zr и Hf имеют св-ва, характерные для ковалентных перхлоратов,-они мало стабильны, летучи; при 60 0C давление пара Zr(ClO4)4 3,59 кПа, Hf(ClO4)4 5,05 кПа; разлагаются со взрывом. Перхлоратогруппы в них бидентатны. С перхлоратами Cs, Rb и К они образуют перхлоратометаллаты с пятью, шестью, а также с семью (Zr, Hf) и даже восемью перхлора-тогруппами Cs4[Zr(ClO4)8]. Перхлораты Nb(ClO4)5 и Ta(ClO4)5 нелетучи и неустойчивы, при т-ре ок. 77 0C в вакууме они обратимо теряют Cl2O7, переходя в окси-перхлораты MO(ClO4)3. При быстром нагревании при атм. давлении оба перхлората взрывают. В безводном состоянии известны также перхлораты d-металлов: Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) и соответствующие им комплексные анионы 3536-76.jpg , 3536-77.jpg и 3536-78.jpg, где M = Mn, Со, Ni, Cu. Безводные Cu(ClO4)2 и NO2 [Cu(ClO4)3] в вакууме при 167-197 0C возгоняются без изменения состава. Получены также несольватир. перхлораты Ag(I), Pb(II), Bi(III), Ga(III), Pd(II).

Термич. распад перхлоратов металлов идет по двум направлениям, напр.:

3536-79.jpg

У перхлоратов Be, В, Al, Fe, Ti, Zr, Hf, Со, Cr преобладает направление (1), причем промежуточно образуются один или неск. оксиперхлоратов; у перхлоратов Cd, Hg(II) и у перхлоратов с преим. ионным характером связи преобладает направление (2), у перхлоратов Mg, Zn, Hg(I), Cu и большинства РЗЭ распад идет по обоим направлениям одновременно.

Лишь немногие перхлораты металлов в степени окисления больше + 1 м. б. получены вакуум-термич. дегидратацией их гидратов-это перхлораты металлов II гр. (кроме Hg), Pb, Mn, Ni и немногие другие. Остальные перхлораты получают взаимод. соответствующих хлоридов или гидратов перхлоратов с безводной HClO4 или с Cl2O6. В последнем случае в качестве промежут. соед. образуются комплексы типа 3537-1.jpg . В пром. масштабе производят NH4ClO4 (более 100 тыс. т в год), NaClO4, KClO4, LiClO4, Mg(ClO4)2·2H2O и хлорную к-ту в виде дигидрата. Перхлораты слаботоксичны.

См. также Аммония перхлорат, Лития перхлорат, Натрия перхлорат.

Лит.: Шумахер И., Перхлораты - свойства, производство, применение, пер. с англ., M., 1963; Росоловский В. Я., Химия безводной хлорной кислоты, M., 1966; его же, в кн.: Исследования по неорганической химии и химической технологии, M., 1988, с. 126-38. В. Я. Росоловский.