При фронтальном варианте через колонку непрерывно пропускают смесь разделяемых в-в, к-рая играет роль подвижной фазы. Хроматограмма в этом случае представляет собой ступени, высоты к-рых пропорциональны концентрациям компонентов; удерживаемые объемы определяют по времени удерживания компонентов (рис., б). При дифференцировании такой хроматограммы получают картину, как в проявит. варианте.
В вытеснит. варианте компоненты смеси, введенной в колонку, вытесняются элюентом, к-рый адсорбируется сильнее любого компонента. Порядок выхода компонентов определяется силой взаимод. их с пов-стью сорбента (рис., в).
Главный показатель, характеризующий жидкостную хроматографию, - разрешение RS двух в-в, к-рое связано с осн. хроматографич. величинами соотношением:
Коэф. емкости k' существенно влияет на величину RS: при изменении k' от 0 до 10 (оптим. пределы) RS сильно возрастает. Значение k' определяется уд. пов-стью сорбента и его кол-вом в колонке, а также константой адсорбц. равновесия (константой Генри). Коэф. селективности a определяется различием констант адсорбц. равновесия двух разделяемых компонентов. При увеличении a (от 1 до ~ 5) RS резко возрастает, при дальнейшем увеличении a - меняется мало Селективность колонок зависит от хим. структуры пов-сти (в эксклюзионной хроматографии - геом. структуры) сорбента, состава элюента, т-ры колонки и строения разделяемых соединений. Т. к. сорбция хроматографируемых в-в в жидкостной хроматографии определяется попарным взаимод. трех осн. компонентов системы - сорбента, разделяемых в-в и элюента, то изменение состава элюента - удобный способ оптимизации процесса разделения.
Эффективность колонки зависит от размера частиц и структуры пор адсорбента, от равномерности набивки колонки, вязкости элюента и скорости массообмена. Удлинение колонки не всегда приводит к улучшению разделения, т. к. возрастает сопротивление колонки, увеличивается давление элюента на входе и время проведения опыта, снижается чувствительность и точность анализа из-за уширения пика анализируемого компонента.
При RS / 1 пики двух в-в на хроматограмме разделяются практически полностью, с ростом RS увеличивается время разделения; при RS < 1 - разделение неудовлетворительное.
В препаративной хроматографии в связи с введением сравнительно больших кол-в разделяемых в-в колонка работает с перегрузкой. При этом снижается коэф. емкости, возрастает высота, эквивалентная теоретич. тарелке, что приводит к уменьшению разрешения.
Адсорбенты. Осн. адсорбент - кремнезем (силикагель), гидроксилированный или химически модифицированный; используют также Аl2О3, углеродные адсорбенты, полимеры, содержащие ионогенные, комплексообразующие группы или группы, способные к специфич. взаимод. с биологически активными в-вами.
Размер частиц силикагеля в аналит. колонках 3-10 мкм, в препаративных - 20-70 мкм. Малый размер частиц увеличивает скорость массообмена и повышает эффективность колонки. Совр. аналит. колонки длиной 10-25 см, заполненные силикагелем с размером частиц 5 мкм, позволяют разделить сложные смеси из 20-30 компонентов. При уменьшении размера частиц до 3-5 мкм возрастает эффективность колонки, но и растет ее сопротивление и для достижения скорости потока элюента 0,5-2,0 мл/мин требуется давление (1-3).107Па. Силикагель выдерживает такой перепад давления, гранулы же полимерных сорбентов более эластичны и деформируются. В последнее время разработаны механически прочные густосетчатые полимерные сорбенты макропористой структуры, приближающиеся по своей эффективности к силикагелям. Форма частиц сорбента размером 10 мкм и выше не оказывает большого влияния на эффективность колонки, однако предпочитают сферич. сорбенты, к-рые дают более проницаемую упаковку.
Внутр. структура частицы силикагеля представляет собой систему сообщающихся каналов. Для жидкостной хроматографии используют сорбенты с диаметром пор 6-25 нм и уд. пов-стью 600-100 м2/г.
Разделение в жидкостной хроматографии проводят в осн. на силикагелях, модифицир. р-цией алкил- и арилхлорсиланов или алкилэтоксисиланов с силанольными группами пов-сти. С помощью таких р-ций прививают группы С8Н17, С18Н37 или С6Н5 (для получения сорбентов с гидрофобизир. пов-стью), g-аминопропильные, нитрильные, гидроксильные (в диольных сорбентах) группы и др. Сорбенты с гидрофобизир. пов-стью углеродной природы получают также пиролизом орг. соед. на пов-сти силикагеля. В ион-парной, лигандообменной и адсорбц. хроматографиях используют метод динамич. адсорбц. модифицирования, при к-ром в элюент вводят незначит. добавки адсорбирующегося на пов-сти адсорбента соед., содержащего функц. группу, к-рая обеспечивает желаемый механизм разделения, напр., при разделении углеводов на гидроксилир. силикагеле в элюент добавляют пиперазин. Возможна также постоянная адсорбц. модификация пов-сти желаемым реагентом при использовании элюента, не смывающего последний.
Элюенты должны элюировать анализируемые соед. с оптим. значениями k', обладать низкой вязкостью, обеспечивать необходимый уровень селективности, быть дешевыми, нетоксичными, инертными, совместимыми с методами детектирования (напр., с УФ детектором нельзя использовать в качестве элюента бензол).
В нормально-фазной хроматографии обычно используют углеводороды (гексан, гептан, изооктан, циклогексан) с добавлением небольших кол-в СНСl3, изо-С3Н7ОН, диизопропилового эфира; в обращенно-фазной смесь воды с CH3CN, СН3ОН, С2Н5ОН, диоксаном, ТГФ, ДМФА.
Если компоненты разделяемой смеси имеют близкие значения k', хроматографируют одним элюентом (изократич. режим), если отдельные компоненты смеси сильно удерживаются сорбентом, используют серию элюентов возрастающей силы (ступенчатое или непрерывное градиентное элюирование).
Аппаратура. Совр. жидкостной хроматограф включает емкости для элюентов, насосы высокого давления, дозатор, хроматографич. колонку, детектор, регистрирующий прибор, систему управления и мат. обработки результатов. Элюенты подаются в насос через фильтр, задерживающий пылевые частицы (больше 0,2 мкм); иногда через элюенты пропускают небольшой ток гелия для удаления растворенного воздуха и предотвращения образования пузырьков в детекторе (особенно в случае водных и полярных элюентов).
В аналит. хроматографах для подачи элюента в колонку используют поршневые насосы с системой обратной связи, позволяющие сглаживать пульсацию потока в пределах 1-2% и обеспечивать объемные скорости от 0,1 до 25 мл/мин при давлении до ~ 3.107 Па. В микроколоночной хроматографии объемные скорости потока элюента ниже: 10-1000 мкл/мин. В случае градиентного элюирования используют неск. насосов, к-рые управляются программатором и подают в камеру смешения 2-3 компонента элюента, оставляя постоянной общую скорость потока.
Для введения пробы в колонку, находящуюся под большим давлением, без остановки потока используют спец. микродозирующие краны, связанные с петлей известного объема для исследуемой пробы р-ра. Разработаны дозировочные системы с автоматич. отбором и вводом пробы с помощью микродозирующих кранов или шприцов.
Колонки для ВЭЖХ изготовляют чаще всего из нержавеющей стальной полированной трубки длиной 10-25 см и внутр. диаметром 3-5 мм. Используют также стеклянные колонки, помещенные в металлич. кожух; в микроколоночной хроматографии - набивные металлич. колонки с внутр. диаметром 1,0-1,5 мм, набивные стеклянные микроколонки диаметром 70-150 мкм и полые капиллярные колонки диаметром 10-100 мкм; в препаративной - колонки диаметром от 2 до 10 см и более.
Для равномерного и плотного заполнения колонок сорбентом используют суспензионный метод набивки. Суспензию готовят из сорбента и подходящей орг. жидкости, к-рая подается под давлением до 5.107 Па в колонку.
Для определения выходящих из колонки разделенных компонентов используют детекторы (см. Детекторы хроматографические).
Для увеличения чувствительности детектора иногда применяют послеколоночную дериватизацию компонентов смеси. Для этого с потоком элюента вводят такие реагенты, к-рые, взаимодействуя с разделенными в-вами, образуют производные с более выраженными св-вами, напр., сильнее поглощают в УФ или видимой области спектра или обладают большей флуоресцирующей способностью и т. д. Иногда дериватизацию проводят до хроматографич. анализа и разделяют производные, а не исходные в-ва.
Регистрацию хроматограмм и обработку данных проводят с помощью самописца или мини-ЭВМ, к-рая также рассчитывает количеств. характеристики и, в нек-рых случаях, качеств. состав смесей. Микропроцессор обеспечивает автоматич. ввод пробы, изменение по заданной программе состава элюента при градиентном элюировании, поддержание т-ры колонки.
Применение. Жидкостная хроматография важнейший физ.-хим. метод исследования в химии, биологии, биохимии, медицине, биотехнологии. Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов, белков, ферментов, вирусов, нуклеотидов, нуклеиновых к-т, углеводов, липидов, гормонов и т. д.; изучения процессов метаболизма в живых организмах лек. препаратов; диагностики в медицине; анализа продуктов хим. и нефтехим. синтеза, полупродуктов, красителей, топлив, смазок, нефтей, сточных вод; изучения изотерм сорбции из р-ра, кинетики и селективности хим.
процессов. В химии высокомол. соед. и в произ-ве полимеров с помощью жидкостной хроматографии анализируют качество мономеров, изучают молекулярно-массовое распределение и распределение по типам функциональности олигомеров и полимеров, что необходимо для контроля продукции. Жидкостную хроматографию используют также в парфюмерии, пищ. пром-сти, для анализа загрязнений окружающей среды, в криминалистике.
Хроматография как метод разделения в-в предложена М. С. Цветом в 1903 на примере жидкостной хроматографии.
===
Исп. литература для статьи «ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ»: Жидкостная колоночная хроматография, под ред. З. Дейла, К. Мацека, Я. Янака, пер. с англ., т. 1-3, М., 1978; Экстракционная хроматография, под ред. Т. Браун и др., пер. с англ., М., 1978; Snyder L. R., Кirkland J.J., Introduction to modern liquid chroniatography, N.Y., 1979; Unger K. K., Porous silica. Its properties and use as support in column liquid chromatography, Amst., 1979 (Journal of Chromatography Library, v. 16); Kucera P., Microcolumn high-performance liquid chromatography, Amst., 1984 (там же, v.28); Nоvotny M., Ishii D., Microcolumn separations columns, instrumentation and ancillary techniques, Amst., 1985 (там же, v.30). В. Я. Давыдов.
Страница «ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ» подготовлена по материалам химической энциклопедии.